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SUMMARY

The National Assessment of Educationsl Progress {NAEP) has had as its
purpose the measurement of educational achievement in children and young adults.
NAEP Report T (1971) is of particular interest and importance in that it
characterizes the performance of tlacks, of respondents with &iffering levels
of parertal education, and respondents from differing types of community.

The authors note that the report describes differences as they are and as
they would be in particular subgroups if the effects of other characteristics
were represented proportionastely in each subgroup. Since in a direct com-
périson between group effects, one characteristic can masquerade effecfs of
ancther, the method selected for comparing gfoups is of great importance.
For example, on science exercises in the report there is a 20% djifference
between the extreme affluent suburbs and the extreme inner city. Because of
the difference in parental education of the two groups, part of this 20%
difference may be '"considered to grow out of the difference in parentél
education." One would wish to compare the two groups as if they were com-
parable with respect to parental education.

‘The procedure called "balancing" is introduced in the NAEP report as an
adjustment method for this purpose. Little seems to be known about the pro-.
perties of the method beyqnd the brief description given in the report. Since
it is apparent that‘"balancing" is being used extensively both in the NAEP
work and in the analysis of data from state assessments such as the State

Assessment cf Educational Prggress in North Carolina, the development of a

I e
better understanding of the method and an evaluation of its strengths and

wesknesses is vital. This has been the principal aim of the research described

in this report.



The investigation of the nature of balancing has required a detailed
investigation of the nonorthogonal analysis of variance, the %undamental
~concepts of marginal means and marginal populations, as well as the investi-
gation of balancing-like data anflytic techniques such as "smear and sweep,"
analysis of covariancé, and standardization. It has been concluded that
the general framework of nonorth;gonal analysis of»vafiance encompasses

the most useful of the adjustment procedures when used in conjunction with

the estimatijon of weighted marginal means.

The material in this report was prepared by

Mark I. Appelbaum
Elliot M. Cramer
Lyle V. Jones
Scott E. Maxwell

Samuel Peng



Chapter I: Introduction

In surveys oﬁe typically describes the ways in which particular groups
of individuals differ. One would frequently like to know why the groups differ
and whether the differences might be ascribed to other variables which might
be modified by educational intervention. The Rational Assessment of Educational
Progress (NAEP), for example,‘has had as its purpose the measurement of educational .
achievement in children and young adults. of particulér interest has been the
performance of blacks, of respondents with differing levels of parental educa-
tion, and types of community.  NAEP Report 7 (1971) describes differences
EE.EESI.EEE and as they would be in particular subgroups if the effects of
other characteristics were represented proportionately in each subgroup. The
method of comparison is of great importance since in a direct comparison of
groups the differences in one characteristic may actually be due to another
characteristic. The procedure called "balancing" is introduced as an adjustment
method for this purposé, apparently for the first time. It is described by the
as follows: ~

"The unadjusted results as reported here and in Report 4 clearly and
accurately estimate the differences in achievemeht between specific groups of
children. For example, over all the science exercises, the median percentage
difference between 13-year-olds in the Extreme Affluent Suburbs dand in the
Extreme Inner City is 20% (from Exhibit 6-1). Except for sampling error, this
accurately reflects how these two‘groups differ.

"However, children in the Extreme Affluent Suburb tend, more than children
in the Extreme Inner City, to have better educated parents. Because of this
lack of balance, part of the difference between these two groups may be con-
sidered as growing out of the difference in parental education. Part, also,

may be attributable to other factors on which the two groups differ. Some of




these factors have been determined for our respondents——their sex, color and

the region of residence. Many other possibly relevant factors have not been
determined, such as the economic level of the children's parents and the cultural
environment in the home;

"It is natural fo ask, 'What would the difference between these extreme
types of community have been if the distribution of Parental Education, sex,
color and region had been the sawe for both types of comﬁunity referred to
above?' Were it possible to'rearrange the world to equate these distributions
for each type of community, the effects upon our nation and its schools would
be profoﬁnd. Such rearrangement is not possible. It is usually appropriate to
think of the balanced results presented in this report as reflecting the dif-
ferences we would see in the absence of masquerading by the other four factors.
We can be reasonably sure the balanced results do & much better job than the
unadjusted results of reflecting such differences."”

Apparently the only justification currently available for the use of the
'method is contained in a ten page appendix of illustrative examples. The basic
data treated in the examples are two-way tables of frequency éounts giving the
number of individuals in a particular cell who have successfully performed on a
particular science exercise. This is illustrated in Example'l where a random
sample of 600 individuals is drawn from some well-defined population. The number
of cases in each cell is representative of relative number in the population
for the particular combination of conditions specified, and the degree of suc-
cess for that group is estimated by the proportion of respondents giving correct
answers to an exercise.

From the two tébles, one for numbers of observations and one for numbers

of successes, the marginal values are row and column totals.
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Example 1
pumber of observations ' number of successes

. B B |

1 2 1 2
1 100 100 200 . 1 50 30 80
A 2 50 150 200° B 2 30 60 90
3 0 200 200 3 - : 100 100
150 450 600 80 190 270

The problem of concern to the authors of the NAEP Report is that the
marginal proportions may not be represenfative of the underlying effects.
There is one sense in which these values are representative; the data are from
a well defined population, and the marginal propoftions are estimates of propor-
tion of success for thet population. However, if one wishes to get at an
éssuhed underlying effect of extreme inner cify uncogtaminated, say, by the

effect of parental education, these marginal values are not representative.

Their introduction of balancing was an attempt to obtain representative values.
The NAEP Report notes ﬁhat interactive differences are not considered and

balancing does not adjust for tﬁem; and also that, "The deficiencies of balancing

are clear; it canhot be the final answer." Balancing will frequently involve

estimation in a linear model that is known to be wrong, e.g., when there are

* interactions present. Also there are other choices of weights, and although

other choices do not affect differences between effects, they do affect the
absolute magnitudes. We need then to.develop a deeper understanding of nonor-
thogonal ANOVA wihich will carry over to the interpretation of balanced estimates,
as.well as providing insight into data analysis more generally. It éhould be
noted that although the National assessment uses medians rather than means for
estimation and uses special methods for estimating standard errors, the formu-

lation presented here may perfectly well be used for estimating adjusted effects.

9



We will show that the method of balanciﬁg can pe deveioped ip Conceptualiy
quite a different way which makes clear that it 1ls a special case 0T nonortho-
gonal analysis of variance. The problem of interpreting balancedq eStimates
then can be related to the more general problem Of interpreting ad)usted effects
in the nonofthoéonal analysis of variance. ThiS more general proplem has been
of concern to us since there is noﬁ currently s Consensus of opinioB on the
proper methods of ahalysis for this more general situation. This is reflected
by the inergent suggestions we have received from mathematical st2tisticians
regarding the testing of main effects by elimin8ting both interactiOus and
other main effects, as opposed to eliminating oBly other m&iﬁ effects, of
course such problems of irterpretation arise in Tegression analysigs too. We
have teen concerned with this area as well. 1In 2 recent article (CTramer, 1972),
misuses of regression analysis were discussed, ©Ven some that haq Peen published

in The American Statistician.

10
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Chapter II: Balancing and th:e Analysis.of Variance

The primary aim o‘f this grant, the explication of balancing in terﬁs of
the analysis of variance, is presented in ‘this chapter. It is shcwn that,
without question, balancing is intimately related to classical nonorthogonal
AROVA. The implications for the interpretation of balanced results are

presented.

il



The educational researcher eagaged in large scale multifac-
tor survey research may often be faced with a substantial statis-
tical problem wheneve; the number of observational units 1is not
equal in each and every cell of an experimental or survey design.
This situation may arise for 2 number of reasons ranging from the
state of nature to the soclo-politics of educational research.

‘For whatever-reason the nonorthogonality occurs, the statistical
problem remains the same, namely that of being able to estimate
the effects of the several states of nature uqcontaminated by one
another. Simple methods of computing marginal means, marginal

percentages, etc. will not yield the desired results.

In an attempt to prdvide an appropriate method for asséssing
such effects, Tukey and his associates in the NAEP (i971) studies
have offered a method called balancing or the balanchﬁ fit. While
this method does indeed provide the appropriate estimates of
effects under a somewhat restrictive set of assuﬁpéions, it 1is
presented in a manner which tends to obscure the meaning of these
estimates in relation to well known statistical methods. Indeed,

‘we shall show that the estimation procedure in balancing is nothing
more nor iéss than the estimation procedure in the ordinary Least Square

eotimation of a nonorthogonal main effects model analysis of variance.

&Q.Exagp1e3 and an Incorrect (but Traditional) Analysis

Let us assume, for illustration, that the following survey

"had been undertaken -~ first grade classtiooms from three geographical

3The data for this example were adapted from NAEP Report 7 (1971).
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areas of the country have been randomly selected, 200 from each
area, and the method of teaching reading noted for each class -~
either "phonic method" or "sight method." Each studenf in each
class 1is given ; standardized reading test and the total class-
room experience is rated a success 1f oné half or more of the
students in the class score at or above:thgir-individual'age norm
on tﬁat test. .The researcher is iﬁterested in assessing the.
effeéts of method of instrucfion and region of residency upon
reading skills.

Table 1 shows the number of classrooms (nij) observed in
each cell of the sufvey. It is apparent from Table 1l that there
are thrée times as many sight reading classes as phonic reading
classes and that there aré no phonic classes in Region IXI. Further-
more, the design is unbalanced (nonorthogonal) since the cell
frequencies are unequal and there 1s no constant of proportionality
between the numbers in either rows or columns of £he'design;

Let us assume- that the world operates in such a way that the
proportions of successes (classrooms in which 50% or more of the
“students operate at or above their age norm) are as given in
Table 2. Within any of the three regions the phonic method
is 20 percentage points higher than the sight method, and within
‘either reading method Region I is 10 percentage points higher
than Region II which is in turn 10 percentage points higher than
Region III.

Now let us suppose that our researcher is "in luck”" and the

true proportions given in Table 2 exactly reveal themselves in

13
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Table 1

Number of Observations in Cells (n

Phonic Sight
—
Regjion
100 200
" Regiow ' s0 | 1s0 200
Region 111 0 200 200
150 450 600
Table 2

True ProRortion of Succegsses in Cells

Region I

Regilon II

Regiat\ II1

Phonic ‘+Sight
r~:70 .50
.60 .40

”;—*“———f————~
.50 .30

|

ke,

14




-1l

Table 3

Observed Number of Successes, kij' with Observed Proportion,

of Successes in parentheses

Phonic Sight

: ~
Region I v 50
(.70) (.50)
.30 -60
Region 1II (.60) (.40)
0 60
Region III ) | ¢.30)
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his data, 1.e., the number of successes kij yielding observed pro-
portions'pij in each cell are as presented in Table 3. We can
see that in each cell, save Region III phonic classes which are
nonexistent, the proportion of sucéesses is identical to that
given in Table 2. The researcher is, however, interested in the
differential effects of region and method of instruction, and so
calculates the nuﬁber of successes in each row and each column,.
finding the r :inal numbef of suc~~gges given in Table 4. Upon
con. & «v percentages (dividing the m§rgina1'number of successes
by the marginal totals), he finds the percentages given in the
column labeled "Marginal 7 Successes.” He further notes that
overall 45Z of the clasérooms meet the success criteria. Since
he 1s interested in the differential effects of region and
instructional method, he then subtracts the total percent success
(45%) from each of the marginal percertages yielding the
results presented in the column labe. "Differential Z%."
These results indicate that the diffe ace between Region I amnc
Regtzr II is 15% and that between II a-_ III is 15%, while tiz=
diff 2rence between the instructional = -hods is about 29%.
We know, howaver, from Table 2 that‘the effects are actually IT%
for each region and 202 for reading method. There appears to
be a2 contradiction,

These results iZZustrate the protflem encountered when the
cell frequencies in z design are unegual and disproportional.
Cle=ri7 we desire an analytic method whiéh acéurately reflects

the @Zfferential effects of the classificatory variables and

17
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which can reproduce accurately the observed ﬁata from the estimated
effects. The naive method illustrated above does neither.

The problem i3, essentially, that in the disproportional cell
frequency case, one effect can masquerade as another. The

example given is particularly complex because‘the estimates of

the region effect are confounded with those of instructional
method, while simultaneously.ghe instrﬁctional method effﬁct is

confounded with region effects (i.e., neither set of estimates is

free of the inf*.ence of the other).

The Balanced Fit and Estimated Effects

The method proposed in NAEP Report 7 (1971) for estimating
the effect of one classification variable uncontaminated by the
influen -3 of the other in a two way cross—-classification has
been desfznat=i the "bmlanced fit" by ité-authors. We find the
fundapentnl~gcinciple of the balanced fit stated in the NAEP
report as follows:

We imrend to find group effects (expressed in per-
certtsxes) that, when combinéd by addition with each

otiexr and with the overall percentage of success, give .

fi:+¢jed! peccentages of success that correspond with the
ac::val data in one simple way:

P

—1f we choose any group by a single characteris-
tic . =say group A, and if we use the fitted percentages
and ithe actual nuumber of cases to calculate the num-
ber »if successes for each subgroup that involves (group
A), and 1f we then add these cxlculated numbers of suc-
cessuz=,, the total number of sSuccesses over all sub-
grovys will be the same as the total actually observed
in zh= dsta.

Let us *~ake estimated group effects to mean differential
row effecrs, say pi -p , and differential column effescts, say

~ ~

p.j-p.. wh.re >.. 18 the estimated overall proportion of

18
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successes. We may then write an expression for the estimated

proportion of,sucdeases in each cell as

-~ ~ -~ . ~

Pij - 'P.. + (pio-p.o) + (P.j-p..)ﬂ | (1)

Since the observed number of successes for each cell 1in nijpij
while the predicted number of successes 1is nijpij' the baéic
principle of balancing, that the sum of the observed numbers

of successes equal the sum of the predicted number of successes

then gives the row conditiomns

Zn = En i-.l'z,ooo,I

J J

and similarly the column conditions

13P13 13743

i . §
or equivalently

In
h

ij(pij—pij) = 0
(2)

-~

inij(pij—pij) =0

Since there are, in fact, infinitely many solutions to this system
of simultaneous equations, two additional conditions are intro;

duced in balancing which make the solution unique

~ -~

Lo, (py P ) =0

G . (3)
n 4P 4P ) =0

where ﬁi. and n.j are the numbers of obserﬁations in the 1ith row
gnd jth column, respectively. Applying the constraints in (3) to

(1), we see that

Q O 19
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~

In
"1.Pyy

~. h |
i. n -3 n

z

P
-J 1:’ and PN i

and that the Py anc p P are marginal proportions using the weights

n j for rows and n, for columns. As the NAEP Report notes, these con-

ditions, (2) and (3), are sufficient to uniquely define the group -

effects in (1) and hence to uniquely define the estimated marginal

p-J. .
(3) have exact parallels in the nonoxrthogonal analvsi ~* Ilimace.

proportions Py and We shall now show that (1), (2), and

Estimation in the Nonorthogonal Aﬁalysis of Variance

Readers faﬁiliar with the analysis of variance (ANOVA) will
recognize certain similazities between the survey design of the
example and designs often analyzed by ANOVA techniques. We shall now
show that the estimates of differential effects obtained from the
balancing procedure are exactly the same as those produced by a
nonorthogonal analysis of variance of a main effects model.

It should be emphzsized that we are dealing, at this time, with
estimation in the ANOVA model, not thé tests of significance
which are more commonly seen .in ANOVA applications.

This important relationship between balancing and ANOVA will
be more easily seen 1if we adapt our notation and terminology fo
thét commonly employed in the ANOVA context. In this case we afe
-dealing with a two-way cross-classificatiom, often called a two-
way factorial, with unequal and disproporzional cell frequencies
(a nonorthogonal factorial zesign). We ;nw consider our first
classification.(factor), iabeled A, fo have I levels and the second
classification (factor), labeled B, to have J levels. We

will use the symbol yijk to represent the score of the kth

20
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classroom under the ith level of A and thez jth level of B.

Let yijk equal one for a success (if 50% or more of the students
in the class score at or above their age norm) or zero for a
failure; Yi4k 1s then a binary random variab;e. The cell mean

o
5 w pil

Yi4 o /

Y13k 1y
i8 simply the observéd proportion i ouccessc. in the 1,Jjth cell
and will co;respond to pijin our earlief_notation.

In the estimationr phase of the analysis of variaﬁce employing
a mafn effects model. one attempts to predict the 1,jth cell '

mean through the lim=ar model ' -

~ A A e

Vi4 = u+a1+8j
where the ai'may be thought of as the estimated differential
effect of the ith l=vel of A, Bj as the estimated differential

A

effect of the jth level of B, and U as a general or averége
effect about which the diffe;ential effects operate. In the
analysis of variance we estimate the values of these parameters
aécording to the Method of lLeast Squares, i1i.e., so that the sum

of squared deviations of the observed scores from the predicted

. scores 18 a minimum. If we let pij indicate that value of the
cell mean predicted from the Least Squares estimates of the

parameters for the 1,jth cell, writing

~

Pyy (4)

A ~ A .
- o+ o, + Bj’

we may obtain the least squares estimates of the unknown parameters

by minimiizing

S = 3% En 2

i

ij(pij-pij)

21
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Since we are predicting cell means, we weight each cell by
the number of observations in that cell. To minimize S we may

differentiate with respect to M, @  and B, to obtain

1 3
£ L n. (p,.-p..) =0
AREE RS ERLET .

~

En, , (,,-p,,) =0

3 1313 “13 (5)

~

i nij(pij-pij) = 0.

The equations in (5), usually referred to as "normal equations“

in the ANOVA context, do not themselves uniquely define ﬁ, and

A

B

ays
5 They do, however, yield unique values of Pij; that is, any
set of values which 1s a solution of (35) will yleld the same

values of the pij Substituting into (4), it follows that

@y T % T PyyT Pry.

particular set of a's are used. This result 1s easily generalizable

is uniquely defired regardless of which

to the fact that contrasts in the unknown parameters are unique
for any solution of (5).

In order to obtain compptafionally unique solutions for
these parameters it is the usual practicé in the analysis of
variance to further constrain the system by the condition that

i a, = § Bj = 0. ]
ﬁhile this 1is the most commonly employed set of constraints,
any éther set of constraints will work edually well and will not
change the meaning of'the resultipg solution so long as one considers
only contrasts in the parameters. Given thi:s freedpm of choice,

we prefer to use the constzaints

In, a4 = In B, =0 (6)
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wvhich are those cdmﬁbnly employed in the nonorthogonal ANOVA

-

.(8Bee for example Winer, 1971).

"We nov © " equation set fs exac +7 "he same as
the balancing « . .: set (2). 1z we further equate.
- ~
H = p
~ A ~
g = Py 7P |
-~ A ~ '
Bj = p.j_p..

equation'(G) is exactly the same as the balancing equation (3).

Our basic ANOVA model (4) may then be written as

Pyy =Bt Gy R )+ BB ) -
so that we have an ‘exact equivalence between (7) and (1) and
hence between balancing and nonorthogonal ANOVA.

Substituting (6) andv(4) in (5) we can also show that

a 3 Zznijpij ) ;
;Znij t
as is assumed in the NAEP Report. Thus, we see that the bal-
ancing equations are but a special case of'thé least squares
equations of a nonorthogonal ANOVA in a main effects model,
and, in this sense, the two are equivalent.

The -correspondence between the balancing‘algotithm and thaf
of the nonorthogonal analyéis of variance makes possible the use
of standard ANOVA programs which properly analvze nonorthogonal
designs (e.g., Cramer, 1967) for obtaining balanced fits. Since
current usage of the balancing technique has been limited to
obtaining estimated cell means and contfasts in main effect
- parameters there 1s no particular concern with th= constraining

system employed since”these solutioms are invariamt with respect
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to the constraining system. If, howevers one wishag to ©btain
the estimates of the parameters themselves it would be
necessary to employ an ANOVA program which allows for tne
specification of the constraints given i2 (). Cramer's (1967)

program, for one, alléws such a specification.

Generalization to Higher Order Classificitions and to Data Type

Other Than Proportions

‘It can be‘shown that the generalization of balancip8 to more
‘than two classifications is equivalent t© egtimation ip & higher
nrder_nonorthogonal ANOVA with a main effects ad&itive p©dey.
Thus, it is possible to produce estimates of effectg bal&tced for
more than one interfering variable. Furthermore, there 18 pno
need to restrict estimates to those of pTroportions. SipCt pal-
ancing does not uniéuely require data in the form of proPOrtioné
(although it is nearly always so illustrsted), one could ®qually
well use the cell means of continuous reBbPopse data in ofder to

obtain balanced estimates of differential effects.

The Interpretation and Meaning of ggiigggg Estimatef

When dealing with tﬁe nonorthogonal anglysis of vafﬁance
(of which‘balancing is just a special ca9e$ careful‘atteﬂtion
must be given to the meaning and interpretation of egtipfteg and
tests of significance. Appelbaum and Craler (1974) have 9igcussed
the problems involved in tests of signifiCance at some 31€0Ngth.
The critical problem in the nonorthogonal case is that ghe

effects of the several states of nature uvPon the dependent

variable in general cannot be estimated of tested Beparagtely;
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they are inherenfly confounded. The exact manner in which such

data are treated has very profound effects upon the meaning

of the resulting estimates and the ways in ;hich they may be

interpreted.

A thorough understanding of the nature of the estimation

procedure used.in the nonorthogonél analysis of variance (and

hence balaﬁcing) may be best f&cilitated from a consideration of

marginal means rather than.of the estimates themselves.

The paraméters estimated in ANOVA (the effects) are defined as

functions of certain population means. It i8 clear that all the

information available for the estimates of effects is included

in the estimates of the mgrginal means. Regalling that the pij

are themselves cell means, the differenfes .between effects which are

of particular intereét can also be eXpréssed as differences

in marginal means. For instance, if we were interested in the

aifferences between effects of the first two levels of the A classi-
- fication, we would be interested in ﬂal;aéb(ﬁl.-ﬁ._)—(ﬁé.-ﬁ.‘)=(ﬁl.~a2.).

. In the procéss of selecting the way in which we produce the |

egtimates of these differences, we are actually making ‘"

two quite different (and to some extent indépendent) decisions.

One 1s fundamentally a question of what it 1s that we wish to

estimate; the second i1s a decision ‘of how to estimate that which

we have decided eo‘éstimate. The first i1s a questicn of weighting;

the second is a question of models and adjustments.

When one does an experimental study, be it a true experimental

manipulation or a survey, one considers that each cell of the
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desipn represents a random sample from some conceptual population,
In a two way cléssificatiOn, the true population mean of one such
conceptual population would be represented as “13' It 1s these
and only these basic populations which have an invariant meaning
defined by the basic design 6f the experiment. When we begin

to introduce the concept of a marginal mean (as we must when we
talk ;f effecté) wve are adding a new conceptual dimensiOn; for

marginal means are weighted linear combinations of the basic

Population means. The way we choose to weight the population means

in effect defines the marginal populations from which the estimates

will be obtained. It must be understood that (1) marginal
populations have no reality beyond the nature of the basic
populations and the way ih which they are combined, gnd (2) that
the meaning of the estimated effects wili“depend upon what weights
are selected (i.e., the weights will determine what 1is being
estimated).

A wveighted mean i1s any linear combination of observations with

positive coefficients which sum to one. There are, of course,

‘many different sets of coefficients with this property, implying

that there are many different conceptual marginal populations

vhich could be defined. There are, however, three basic types

of wéightings which might be employed for a two wéy design:

(1) equal weights, (2) singly subscripted weights, and (3) doubly
subscripted weights. 1In order to understand tke nature of these
three weighting schemes, consider for the moment the situation

~

in which we know the estimated population means “13 for each and

every cell in a two way design. Consider the construction of row

marginal means with each of the three welghting schemes.
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In the first case, all weights employed would he equal so
that the marginal population mean for the ith row of the experi-
ment would be

My, © §"1j/J'

This type of marginal mean is usually referred to as.én unweighted
marginél mean. In this case, each of fhe basic populafions .
is treated as beinp identical to all other populations fin its
contribution to the mafginal populations. In the second case

the wéights carry only a single subscript yielding row means of

the form

.
~ -~

My, ® gwjuij'

The several basic populations entering into the row marginal mean
are different;ally weighted, but the weights are the same for
every row. These marginal means will, in general, be different
from the'unweighted means. For the third case the weights for
each row will sum to one but they will differ from row to row.

In this case the marginal mean for the ith row will be

A A

My, ?“15“15'

A question which must concern us is "for what gsituation will we
want to use which of the various weighting schemes?" If in the

example considered we were interested in estimating the differences

between the two reading methods asg they are used throughouf‘the
country, we would be interested in differential effects based
upon weipghted marginal means, where the weights reflect the number

7of classes using a particular reading method in a particular region
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of the coutry (a doubly subscripted weighting system). If, on
the other hand, we were interested in estimating the differences

between the two reading methods as if they were equally used

throuphout the country, we would be interested in differential
effects baséd upon equal weights. A third possibility would be
to assume that thé use of both methods was 1in proportion to the
population in the various regions. This would imply that the -
same welghts would be used for both methods, 1.e., singly
subscripted weights. The choice of the weighting system is
entirely up to the investigator, buf the choice 1is not a trivial
one. The selection of the weighting system basically defines
what it 1is that the resear;her is referring to. One further
refinement on the natufe of the weights 6 in the case of balancing

will be added shortly.

The Nature of the Weights

Up to this point, nothing has been said about the nature
of the weights themselves. 1In practice the weights may represent
any conceptual entity which the researcher deems important, say
the relative cost of a treatment, the current so§131 Importance
of a particular segment of the population, etc. Surely the mosf
common weights by far are the relative sample gizes. Insofar
as the observed cell frequencies represent (are proportional to)
the actual population sizes, weighting py the cell frequencies
may be logically sound. In those cases where the observed cell
frequencies do not reflect any true state of nature, or when the
populations are cﬁnsidered to be infinite, such a weighting scheme

can make little I{f any sense.

Q . . 253
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At this point a word of caution seems to be in order.
It 18 important to distinquish between weights as we have defined
them above and the coefficients of the “normal equations™ in (5)
and in the constraints of (6). The weights are defined for the
purpose of constructing marginal populations; the coefficients
of (5) and (6) are the result of the Least Squares criterfia and
are completely independent of consideratiohs relating to the

definition of marginal populations.

_'The Problem of Estimation

Having decided upon a weighting scheme and thereby defining
marginal populations and a potential set of effects to be
egstimated, one is left with a sécond, although not totally
independent question of how to do the estimation. Clearly, 1if
we possess unbiased estimates of the individual population means
we can easily obtain unbiased estimates of the marginal means no
matter how they are defined. Since linear combinations of aniased
estimates of population means pro@uce unbiased estimates oflgﬁé
same linear combination of population values, we may always
obtain the desired unbiased estimates. Thus, the problem of
éstimation reduces to the problem of how to produce unbiased
estimates of the individual population means.

Whenever one establishes estimates of parameters, say
population means, one 18 always operatiqg with;n the context
of a model; the nature of the obtained estimate depending upoOn

the model in which it is estimated. In the two way classiffcatfon
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scheme there are five reasonableé, but different models which might

be used to estimate a typical population mean uij. These are:

i) wn - u+Gi+Bj+aBij (the interaction or cell means model)

1]
ii) "11 = u-l-ai-l-Bj (the two main effects model)
111) uij = p+0.i (the maiﬂ effects A model)
iv) "11 = u+Bj (the main effects B model)
vj ey =M (the grand mean model).

When an experimental design is nonorthogonal and when the Least
Squares es;ination procedure 1s used for obtalining the estimates,
very differ;nt estimates of the population means will obtain for
estimation In the different models and, as a consequence,
different estimates of the marginal means and differential
effects will result.

If we choose to estimate the individual population means in
the first model (the interact;ve or cell means model), the ordinary
cell mean, ;;j’
unbiased estimator of the population mean “13 without regard to

is obtained as the estimate. ;ij is always an

which model obtains in nature. If, however, one of the simpler
mddels should be the true model, the variance of the ;ij's will

be larger than the variance of the unbiased estimatof resulting

4

Some authors have suggested other possible models, e.g.

= + ' .
Mgy = Wita taB,
Problems involved with such models have been discussed elsewhere
(e.g. Appelbaum & Cramer, 1974) and are not considered here.
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from estinmation 1n_the correct model. Thus, ;é » while always
providing an unbiﬁsed estimator, will not be the minimum variznce
unbiased estimator unless there 18 truly an interaction betwesm
the cleasificatior feaminwsg,

*ugm.estimat:om_wzu:éeds from the secorxd model (the two
reair =2f¥=cts model), on+ obtains the bzlaaced fit
ewrrimatas of the populacion means (or ¢ ‘.valently the main
effec ;' ANOVA estimates). These estimartei:: are zmbiased only when
one wf cthe non-interac=dion models (i1, i, 4dv, or v) holds in
nature and will be mir—mum variance unb_ised only when model ii
holds. Thus, estimates=s from model 1i, often called adjusted
estimates, are appropriate only in the non-interactive case.

In a similar fashion, estimates based on models iii, iv,
and v will be unbilased estimates only when the corresponding
models obtain. These estimates provide minimum variance unbiased
estimators only when the particular model holds.

One 18 free to select an estimation scheme based upon one's
belief in the state of nature, but one must always remember
that this choice will simultaneously affect the resulting
estimates both in terms of their unbilasedness and variance. 1In
order to obtain unbiased minimum variance estimates one must
estimate in the model corresponding to the true state of nature.
Should the model selected be too simplé relative to the true
'state of nature, the egstimates will; in.general, be biased;
shoula the model be too complex, thé estimates will not be

minimum variance.
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Tthe Imtemsection of Weighting Schemes and Estimation

Any P dc:ezdure for obtaining estimares of effects I an r—wey
layout c:ap neov = viewed as the interwmec:tion of a welpheing
séheme end uwz eszi-nation procedure, anc its properties may be
better und=ratmesc by examining the cons:quences of the individual
components. Azla:cing 1s, in this view; the intersection of a
singly submr-iptesr weightinm system with model 1i estimation
(two main ef’2cZfs nodel). Thus, the balanced estimates of
differenti: :if:£-ts are estimates obtaiﬁéd employing singly
subscripted ., moizz for each population and by assuming no
iﬁtetactiog) wmorr; the classification dimensions.

It is8, rwe=w=r, possible to view balancing as the inter-
section of ¢ :uw: welghts and model ii estimates. This iﬁdeter-
minacy occurs .r2cause of an interaction between the weighting
system and es—Zmation sSystem employed. This result, yhich has
major implicacions for the interpretation of the balanced fit
may be underszcmod more easily by returning to our initial example.

The NAE? inwestigators discuss.bplancing in terms of making
comparisons bertwm==mmq two'grmups as 1f the groups were identical to
one another in ==—ms of their compositions on other (interfering)
variables. This goal clearly implies a s8ingly subscripted
weightiné system. In terms of our initiél example, this amounts
éo askirg abont the differences in reading method as 1if they were
used in the szme proportion in all threé regions of the country.
Thus we would be interested in the éolumn marginal difference

with the row' weighted the same for both columns; i.e. we are
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‘mterestrted -Hdn
My T U g where U . = Vil F Volyy + Vglgy

~N
and u = v U

FR LTI SLP P I S P

The vi‘s are the weights to be applied to e=:zn regiez and may,

for instance, refleczt thes relative sizes of e region in

terms of the number of first grade classroom:.. We may now write

_, 7 _' A /\.( PN - -A
i L TR SR U T ViMar F Vakpg T TigHag)

-

~

v - - -y -
(villaa ¥ Valay + Valgpdw v{Hyy - Mpp) b vEgg < My,) +

v3(;31»_ ;32)'
The implication of the noninteractive model employed by the
balancing system,.howevet, is that all row differences must be
equal across columns and that all column differences mmst be

equal across rows. Therefore, (u11 - ulz) = (u21 - uzz) = (u31 -

—

u32) = 4 | Thus u v.A + va + v.A = (v, +v, + v3)A.

1" K2t Y 3 1 2
We further note that the weights must be chosen to sum to 1 by

their very definition and hence u , - , must equal A.

.1
The implication of this result is that it makes
absolutely no difference how the subpopulations z—= w=ighted in
constructing the margiﬁal population in the balanced solution as
long as rthey are weightgd the same for each popmlation. This
implies that the true relative‘sizes of,.say, reziione of the
.country do not enter into the aésessment of the mmthods difference.
"Since equal weights a;e but a special case of singly subscripted

weights they could equally well be used. We therefore conclude

that in balancing it makes not the least bit of difference

ERIC | A3
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wheti=~T we equally wei.;; the =wubgroups or wvelghz :hem differen=zi-

-

al?= in the sense of sz ly sutk.cripted weights.

The “traditionmal tw:. inco:zzec:t analysis™ premsc-ated as the
firsc example in this paper if zm example of an = w—ighted
schzze wiTh model 1fd esstimatms ;baa;ned foer the =5 and model
iv estimvies obtained for the =zmicmns. The incorrz: tness of thiss
anatvsis zrises from the fact that we are apply=nz & one main
effect model when indeed there are: two main effects. The row

marginal means are oibtained from = model sij = ﬁ}&i where

u+a -Xnijpij wkile the column marginal means are obtzined from

i
A
a model pij=u+8j wvhere u+§j=inijpij-
Conclusion

It_has beer. shown that the estimation procedur=z
emp_oyed in balancing is nothimg more or less thaxm tie Least
Squares esciﬁation cf effects Zn a nonorthogonal wmair effects
model analysis of variance. In assessing the approprzateness
of this method of analysis for a particulax study, ones must
consider th= appropriateness of the two component elements: first
that of the weighting scheme empioyed and second that of thke use
of the mzin effects model.

Zalancing, it xas been seen, can be viewed as employing
elther singly sulsscript=d weights or equal weigh;s; the resulirs
being: imvariant o zhis selectiom. It éhould be moted that =hese

ar= not the only possibile sichemes, nor the onms mecessarily

desiz==ad. One could alte=rnatively use the cell esrimates obwained

for zne solution of the balancimg equations, but =hen use un=qual

welgiits to define marginal population means. The selection is up
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the researcher and depeadls only upon what it is that he wishes
to ‘=srimatre.

Ine aggessment of -tm: use of the main effects model is =&
somewiiz: more difficult :s-sue dwe to the fact that the appro-
prizatenzss of the model .w=pends upon what is true in nature, not
simpily wpen what we wouilc like top be true. 1In many ANOVA"
apn i irmeions tth-ia~n6:.a ba:ticnlar;prob;emnfor one often
tescs .ze gpigmificance w: the interaction prior to estimation in
order %o determine what is the proper model. 1In using balancing,
haowverver, one #s at the cntset assuming that the main effects
mode’ is apprmpriate. Twe basic implication of this assunmptioz
1s =hat we are assuming mo differemtial effect of one state of
nature comcitional upon another. In our example we are, for
instmnce, assuming that the difference batween the efficiency
of phoni: and sight metkods of reading instructiorn is the same
Ir ==ach and e#eriiregion-under study. The tenability of the
covi-inte—=ctimn assumz=ion is, of course, cohpletély dependent
unzn the pért:cular ==udy under considerati-m and no general
-rTulesg caﬁ'be Tormed =T saying a priori wh=n the assumption holds.
There may be certzia —ircumstances under which the additive model
i aprrropriare, buz I= weuld seem, in general, to be a dangerous

gsFomprion tm rowsiiely =mploy.
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Chapter III1: The Nonori.aogonz . ANOVA

Central to the urderstanciag =F balancing is the concept of the nomor-
thogonal ANOVA. The following ~he=tar serves :tc illuminate the fundamenstal
concepts of tt== nonorthogomal 1=siz— and tc resolve a number cf the cortro-

versies surrownding this gornera. tmZe.
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The nonorthogonal, multifacter anely=is of varienee (ANOVE) is, perhsps,
the singly most misunderstood analytic tevhninue mveilsble to the behavioral
scientist save fector ane’ys=_.s, Standard texibocks sl> but igmore it, or,
when they do consider this csse, bury it zn =wch confused mathemstics or
aporoximations as to meke i barely undersmamdable to even rstiher statistically
sophisticated researchers. Wecent journal ==icZes (e.g.. Jo=, 1971; Overall
and Spiegel, 1969; Rawlings. I972; Werts and :.mn 1971; and Williams, 1972)
have attempted <o clarify <ir= sitmation and set guid=lines for the analysis
of nonorthogonal, multifacter experiments, but bhave, in our opinion, dome
neither. These papers hew=, ageir, comfmsed <he issuss withs mrecessary
mathematical proofs, with entiguated "apprerzmate" methods, =nd sith the

implication that somehow necmorthogonal ilesizzs =zre spectial cases to be

[}

avoided at all costs. 3o su™onz is the belis™ that “nere - something
inherently "diffiult" or "stremge" about tne nomorthogams. as= that experi-
menters will, or accasiom, mo —: wmuswzl lsmmths, sush == Twindomly discarding

data from selected cells., in - ‘3=r to achieve an orthogozzl desdign.




~37~ -

We wish to argue that there is no conceptual difference between orthogonal
‘and nor-~orthogonal AﬁOVA and that, indeed, the orthogonal design is a special,
and oczasionally artificia% case of the more general non~orthogohal design. By
approaching the entire issue of the analysis of variance as one of model com~-
parisons the special problems encountered in the nop-orthogonal case are rather
easily undefstood and resolved. The closely relaﬁed ﬁroblem of deletion of
variables in multiple regression analysis has been discussed by one of the
authors (Cramer, 1972); By treating ;he problem as one of comparisons of linear
models he has resolved the issue in a clear and falrly obviéus manner. We believe

that a similar approach with non-orthogonal designs will lead to the same resolutio:

The easy access to sophisticated computer programs which perform the
analysi:s of variance by a.géneral linear model approach (e.g., MANOVA; Cramer,
1967) mmkes the computations for this method of dealing with non-or thogonal,
multifactor designs possiﬁle and eliminates, in most cases, the need and
desirab:ility for "approximate" solutionms.

Terminoogy and basic concepts

Before proceeding with a detailed discussion of non-orthogonal analysis of
variance, it is necessary to’ clarify some of the terminology and concepts that

are fundamentél to these analytic techniques. A non-orthogonal design refers

to ahy experimental design in which the numbers of observations are not equal
in each and every cell. This definition encompasses even designs that are
traditionally classified as proportional and includes designs that are not com-
plete factorial. Insofar as an experimental desigu may be considered-a
partiali; complete factorial design (e.g., Randomized Blocks, Latin Squares,
ngsted.or hierarchical designs, etc.), the principles discussed in‘this paper
apply.

38




-38- .

We shall use thg term method to refer to the estimation procedure which
we shall assume to be the Method of Least Squares. The concepts developed and
discussed in this paper apply only to Least Squares Analyses and should not
be applied to non-exact approaches such as the Unweighted Means Analysis (Winer,
1971; 445-449) nor to cases which employ some other method of estimation of
effects.

By an experimental design we shall mean the plan of the experiment determined
by the experimenter on the basis of his ;onception of some idgalized state of
nature. The minimum requirements for an experimental design are the specification
of the experimental factors to be manipulated and the plan for random assignment

of experimental units to treatments, including both the sampling plan and the

determination of the number of units per treatment. It is the experimental design
whiclh implicitly specifies a set of possible models or idealized states whose
appropriateness we shall attempt to assess.

Hypotheses or tests of hypotheses are, in essence, comparisons 6f various
models. It is fundamental that one understand that, within the analysis of
variance, one is always trying to assess the appropriateness of one model
in comparison to another one. To stress this point, we shall often refer to
s{gn;ficance tests as model comparisons. Unfortunately, the standard approaches
to the analysis of variance in most introductory courses overlook this con-
sideratioﬁ and have led to much unnecessary confusion.

Finally, one must carefully consider those situations which méy produce
a non-orthogonal design. First there is the case where the design is inten-
tionally planned as non-orthogonal and is executed as planned. Such designs
are reasonable and ﬁay be preferred in cases where contrasts of particular
cells are desired, or where greater precision of estimation is required in
some cells than in others. Similarly, some experiments, particularly those

involving concommitant variables as factors in the design, may be planned
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as non-orthogonal in order to ailow naturally occurring differences in cell
frequencies to manifest their effects in the resulting tests. While these
designs are rarely'enCOuntered in psychological studies, they do have appli-
cations and present no particular difficulty in terms of‘"proper" analysis and
interpretation. The discussion of the non-orthogonal apnalysis of variance which
follows is directly applicable to those designs. The second, and far more
common, case occurs when a design (orthogonal or non-orthogonal) is not exe-~
cuted as planned. That is, once the random assignment of experimental units

to treatments has Ueen made, data are not obtained on some units. In this
second case, one of two different gituations may have occurred and, depending

upon which is true, rather diffeient approaches are required. It may be that

the "cause" of the loss of e*perimental units is a random phenomenon or
one unrelated to the experimental treatments. Death of experimental animals,
fno-show" of college subjects, ecc. often may be viewed as essentially
randor phenomenon. Again we have no particular problem for we are, in effect,
left with a random sample of a random sample which is itself a random sample,
and the methods of non-orthogonal analysis of variance to be discussed scili
apply.

The situation that may cause considerable difficulty is when the "cause"
of loss of experimental units cannot be considered a random phenomenon (e.g.,
it may be related to the experimental treatment). This situation may be
obvious, as when the coﬁbination of treatments cause the death of some experi--
mental units; or it may be subtle, as when one set of treatment combinations
are run lggg in the afternoon causing an increase in the no-show rate. In
such a case; there would seem to be no remedy short of pretending that the
missing observations are random, and hoping that the results will be reason-
able. Perhaps the definitive statement was made by Cochran and Cox (1957,
P- 82) when they observed that the only complete solution to the problem

of missing data is not to have any. The following method leads to correct
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analyses and interpretation of designs which. are (1) planned as non~orthogqnall

or (2) which become non-orthogonal due to the random processes of nature.

Models and the method of least squares.

ﬁaving decided, éither by choice or default, to employ the method of least
squares and having determined the design of the experiment on the basis of a
belief_as‘tovtﬁe naturé of the world (in some idealized sense), one is left
only with the selection of possib1e models and ﬁodel comparisoné. We,first' -
note that the models selectéd arehlogically independent of the observed
ﬁumbers of obserations per cell. While obviously the analysis will be

affected by the cell frequencies, the experimenter is free in the design of

the experiment to choose the numbers of Sbservations per cell, constrained
only by considerations of efficiency and convenience. The models themselves,
tﬁe representations of our belief in the nature of tﬁe world, are nét expressed
in terms of the number of units in any subpopulation--indeed, the models being
considered are usually in terms of infinite subpopulations. Since the model
itself is free of population size, thg cell frequencies can hardly matter

in terms of the correctness of the model. But then why all of the concefn
about non-orthogonal.analysis?

The problem gg_non-orthqgonal analysis really occurs at the level of

model comparisons and proper interpretation of the results of such comparisons.

As we shall see, the difficulty arises from the methods available to assess
the "correctness" of the several models being compared.

One-way ANOVA

Let us first c?nsider a k-group one-way -ANOVA with nj.observations in each
group; a design which is usually thought to offer no problems, even with unequal
cell frequencies. It is our goal to make inferences concerning the population
means in the several treatment populations. These inferences will be based
.upon the observed sample means, the best unbiased estimates of the population

O neans if we make no additional assumptions about the populations beyond those

ERIC
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One-way ANOVA is commonly treated as the comparison of two models
I Y = 4o, +e
(1) g4 = Wiogtey,
(11) Yij = u+eij |
If model II is the correct model, the means for the several populations must
be exactly the same and the best unbiased estimate (the least squares estimate) of

each of them is the common mean of all the observations. This estimate has

variance 02/2n » Where 02 is estimated by the common'within-cell variance.

3

1f model I is correct, the besc-unbiased estimatg of ;ny population ﬁean is the
samélq mean for that population which has §ariance az/nj. The best unbiased
estimaté of any difference (contrast) in the population means is the difference
(cbntrast) in the sample means. This 1is true regardless of the number of ob-
éefvations obtained from any pbpulation since knowing one population mean
telis one hothing about any other population mean. (Note that if Moéel 11

.

is correct, estimates of means obtained from Model I are unbiased but have .

variances which are larger in the ratio zz:nk/nj).
k=1 ~

The number of observations obviously does effect the variance of the
estimétes of population means and must also affect the power of any tests
of significance. For any two groups (j‘aqd #) the variance of the meaa diff-~
ereﬂces is the weighted sum of the variances (of means) 02/n5+02/nk. If
the total number of observations for the two groups is held constant, this
variance is a minimum when the cell frequencies are equal and the power of
thé test of the diffgrenqe of these population means will be a maximum in
this case. Similarly it can be shown that the power of the test‘of equality
of all the population means is a maximum when all the cell frequencies are
equal, Thus ;he éffecg of non-ozthogonality in the one-way ANOVA is in terms
of the power of the test-~not in the obtained estimates nor in the test of

their significance. 4 2
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TUOfWhy Analysis of Variance

The situation is not nearly so simple when we move to the case of factorial
experiments. The additional problems encountered im the factorial case are
illustrated by the following example, intentionally constructed to represent

an extreme case. -

Consider a two-way ANOVA for which we have observed the cell means x

i3
with the cell frequencies n;'..j as given in Table 1. Assume that the estimated
within-cell (error) standard deviation is 15 in each cell (i.e., MS =225).
_ : : error

Table 1

Cell Means and Frequenciles for Two-~way Example

Cell Means, xij Cell Frequencies, nij
. B . B
1l 2 1l 2
1 | 10 10 - 1 | 25 | 2
A ' . A
2 20 20 2 2 25

As an exercise, let the reader'cdnsider the answers to the following
questions before proceeding further: (1) What can one say, given the above
information, about the presence of any main effects or interactions in this
experiment? (2) Given the answer to this question, further consider what
one would suppose to be true of the popul;cions?

In our experience, relatively sophisticated psychologists and graduate
students will not necessarily answer rhesé questions in a consistent manner.
We believe that the customary training in psychological statistics will iead
many to base their answers to the first question on the means alone judging
that there is an A effect but no B effect or interaction. The obvious in-

equality in the numbers of observations per cell will be troubling and the
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sophisticated respéqdent will cértainly observe, in response_ﬁo the second
~question, that the main diagonal means are much more gtable ﬁhan the off-
diagconal means. |
If one asks the further question, '"What would and should an ANOVA

analysis tell you about the true populations?h, we ére at the heart of the
problem qf non=orthogonal ANOVA. Surely any ANOVA, orthogonal or not, must
give information about the population means. It is not reasonable that un-
equal numbe;s of observations in cells will alter the character of this in-
formation, although it will certainly alter the.preciéion of any statements.

Looking at the sample means of Table 1 it is apparent that if the popu-

lation means are the same as these sample means (and this is our best guess), . -

there is only an A effect present. Our statements must, however, take into

account the sampling variability of these sample means. Coﬁsider, for a
moment, the 95% confidence intervals (Table 2) which might be generated about
the four observed sample means. Since the_éamples themselves are independent

random samples from four possibly different populations, the confidence in-

tervals are, in the same sense, independent. From these confidence intervals

Table 2

$5% Confidence Intervals on Sample Means1

B
1 2
1 3.97<uy,<16.03 ~11.322p, ,<31.32
A :
2 |-1.325u,,$41.32  13.97%p,,526.03

1l .
These confidence intervals are based upon the pooled MS error with 50 d.f.
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‘we may see it is reasonable that 'our sample could have come from a set popu-

lation with any of the following patterns of means (Table 3). These are but

" Table 3

"Reasonable" Population Means

B B ) B’
1 2 | | 1 2 1 2
.10 10 1l 10 20 10 20
20 20 2 10 20 30 20

three among many possible sets, but notice that we would consider the first as
one in which there was a main effect of A, but no B or AB effects; the second
‘would be considered as an example of a main effect for B but no A or AB effect;
while the third Qould be indicative of a situation with interaction and a main
effect.

‘We thus belieﬁe that the conclusion one should logically draw frém these
sample values is that there are somé effects, but that the data do not per-
mit a definitive statement as to which. We further believe that a proper

ANOVA should lead one to draw such conclusions.

An incorrect'"approximate" analysis

| Let us now consider an erroneous analysis which we believe many psycho-
logists might be inclined to perform. This 1s an analysis of each factor
collapsing over the other. Although it does have some>intuitive appeal'and
1ndéed may be useful in:conjunction with other analyses, it will, in general,
leaa to incorrect conclusions about the population means when\ggéghglggé.

Supposc we collapse the design given the Table 1 over the B classification

1éaving us with two levels &f A with mean vélues of 10 and 20 as shown in the

marginal values of Table 4. A one-way analysis would then lead to the con~-
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clusion that there.zs a significant main effect of A (p=.017). If we then

collapse over levels of A we have the levels of B with means of 10.7 and

Table 4

Means collapsed over Classification

B
1 2
1 10 10 10
A
2] 20 20 20
10,7 ' 19.3

19.3 suggesting a B effect (p;.042) as well as an A effect. We would call
these analyses, respectively "A ignoring B" and "B ignorihg A". The use of
tﬁe ﬁhrase "A ignoring B" is meént to indicatg that in our twbdwéy.table we
"ignoré“ the Brclassification and treat the desién.as if it Qére only a oﬁe-'
‘way classification with levels of A. Observétions fqr a given level of A are
‘considered replicates regbrdless of whether or not they correspond to the same
level of B (that is, we assume no B or AB effects). When there is no B or AB
effect, the observations at the several levels of the collapsed factor'are, in
effect; replicates since the variability between levels of B ig of the same
order of magnitude as the variability within é'level'of ﬁ. If however, in a
non~orthogonal deéign, there 1is a B or an AB effect, the estiﬁated magnitude
of the A effect (ignoring B) will, in general, be affected by the number of
observations in the cells and does not represent an unbiased estimate of any
population value. Only wheﬁ thgre are equal numbers of observations in the
cells will the estimate éf-the magnitude of the A effect be umaffectéd by the
numbgr of observations in the presenﬁe of a B or AB effect.

In general, when we are estimating the magnitude of effects, we may safely

ignore other éffects in the design only when they are null or when their esti-

O mates are independent of the effects in which we are interested. The first

E119
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condition (that of qull effects) depends only upon the state of nature; the
second {independence of estimates) depends only upon the actual design of the
experiﬁent. The conclusions drawn from this "ignoring" analysis of Table 1 will
be incorrect under the (plausible) assumption that there is only one main

effect in the population responsible for the results.

For the general non-orthogonal case a different method 1s necessary in - -
order to e#timate treafment effects without bias and to pfﬁvide unbiased tests
of significance. These are tests of "A eliminating B" and "B eliminating A"
with corresponding estimates of the effects. In essence these arégpests which
take into account énd eliminate the confounding effects of 6thervf§ctors when
they ‘are present. Thus a test of "A eliminating E" "removes" any confounding .
effects of factor B. If there is no B effect (i.e., it is null %n the popu-
lation) or if the design is orthogonal, there is mo confounding due to B and
noqhing to eliminate; hence the test will be identical to tma* of ™A ignoring
B". The test =f "A eliminating B“ answers- the question: géwe= the possibility
of a B effect :is there evidence for an A effect in addition = any B effect |
which might be present. On the ofher hand, the test of "A ignoring B"” in general
answers the question: Is there aﬁy‘evidence for an A effect assuming there is
no B effect or ignoring it if itiis'ﬁresent. The estimate of the A effect
corresponding to the test of "A eliminating B" is unbiased regardless of the

existence of any B effect or of orthogonality in the design. It is always

the "correct" estimate.

Model Comparisons and Tests of Effects
The more general "eliminating'" method described above involves fitting a
model nilowing for both A and B effects and then comparing the fit (i.e., the

quality of the model) to the fit of a model omitting one or more of the effects.

For example, consider the following models which "predict" the response of a

subject in the 1j cell of a two factor design
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I. Yij=u+a1+8j+yij+e
Yij'"*“i*“j*‘

. III. Yij-"+ Bj+e
Iv. ?11’“*“1 +e

V. Yij'" +ec

Model I 1is thg most complete model for a two factor design; it allows

. for an overall level (), ;n effect dépendent upon the level of factor A-(ai)’
an effect dependent upon the level. of facfor B (Bj)’ and an interactive effect
(Yij) dependent upon the joint, non—aédifive effect of the combination of the

ith level of factor A with the jth level of factor B. The other models are ob-
tained from the first by d=opping the imteraction Term amd passibly one o= both

of tixe maitn effects. Thos=. accustomed to only ortirogonal ANCVA will be in-~

clineii to.regard model I as:capablg_of providing the parametric estimates-needed
.fo; tiz= other models, but‘this is not so in general. Each model represemzs a
separate least squares estimation problem and may provide different estimates

of the parameters involved. Only in the case of orthogonality will the esti-

mated parameters for the different models be necessarily the same. Likewise,

iF is only for the orthogonal case that the estimated parameters within a model
will be statistically independent (unéonfounded) of one another. This is the -~
real meaﬁing of orthogonality. |

We would begin the aﬁalyéis of a two-~way factorial, either orthogonal or

non-orthogonal, with the t=st of interaction. Our feelings of parsimony dictate

a preference for a main effmcts model if it is consistent with the data and

éo we would-wish to compare a model allowing for main effects and interaction
(Model I) with one only allowing for main effects (Model II)--that is testing

AB eliminating A and B. In a two factor complete factorial experiment this is the
usual test of the two-way interaction which is roqtinely employed. If we are
able.to reject the hypothesis of null interaction effects our usual procedure would

be to stop at this point with an interaction model. If, however, we are unable
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to rej=== this hypothesis (i.e., conclude that interaction effects are non-
significant) we would wish to proceed with tests of main effects.
When we allow the possibility of both an A and B effect in the population

we are specifying a series of tests involving model II. Thus, to test either

effect we must test it in that model, implying 2n alternative model in which
it is absenf. To test for an 4 effect we compare model II to model III, while
to test for a B effect we compare model II -to hodel IV. In each of ﬁhese
tests we are allowing for the:possiblé existence of the effeéf not being
tested. In testing A we ar= asking the question "given the possible existence
of B in cur model, do we need A?" This is the meaning of the term "A elimi-
nating. B, o

.E:r_jﬁdgment as to whi~h model to accept is based upon the relative
magnit=des of the sum'of squared errors produced by th= competing models and
the F test gives a method for testing whether the models differ in this res-
pect. This procedure is élways correct, in either the orthogonal or non-
orthogonal case. In the orthogonal case it will produce results identical
to those produced by the ordinary computational methods.

Different tests of A and B éffects may be appropriately c¢btained by
beginning with different model assumptions. If we assume that there is no B
effect, ﬁOdEI IV is an appropriate model and we would compare it to model V in
order to test the existence of an A effect in model IV (i.e., without regard
to the existence of a B effect). This test of "A ignoring B" is not a proper
test unless model IV is the correct model, i.e., unless there is no B effect.
Similarly we may test B ignoring A by comparing model III against model V, but
here the test is proper only if model IIX 1is appropriate, i.e., there is no
A effect. In the case of an orthogonal design these tests will give us ghe
same results as those tests involving model II, but while the results aré com-
putationally the same (due to independence of the estimates of the parameters

involved) they are not logically the same in terms of comparing the same models,

49



“hg-

An Examgle
Lec us now apply chis method to the data of Table 1 using the MANOVA compucer

r,r-xa

program (Cgamer, 1967). Ve may suumarize all the relevant statistical tests in

the following ANOVA Table (Table 5):

Table 5

ANOVA Tables for Complete Analysis of Data in Table 1

Source df SS - MS F p
AB 1 0.00 0.00  0.00 . 1.000
A elininating B 1 37037 370.37 1.646 . .205
B eliminating A 1 0.00 0.00 0.00 1.000
A ignoring B 1 1349.99 - 1349.99 5.999 .017
B ignoring A 1 979.63 - 979.63  4.353 ©.042

Within Cells 50 11250.00 225,00

1t may be clearly seen thét fhere is no evidence for an interaccion;'

hoWever, the small numbers of observatlons in two of the cells makes the power

- - “of this test rather low. Tests of A ellminatlng B and B eliminating A are
-ciearly non-significant, while the tests of A ignoring B and B ipnoring A,
given previously, are both significant. All five of these statistidcal tests must
be consider=d in order to draw proper conclusidns about the population means.
Th; tests o A elimihating B and B eliminating A do not provide us wifh any
evidence regarding the existence of either A or B effects (although they clearly
imply that both effects are not necessary Jointly), thle the tests‘of A ig-
noring B and B ignoring A separately provide us with eVi&ence'for either effect,
depending upon which test we consider. ‘Keeping in mind the models which are

compared, the "eliminating" tests tell us that we have no evidence for one

" effect in addition to the other. We must conclude then from this statistical

analysis that there must be some effect, either an A or B effect, but we
cannot tell which, and there is, clearly, no evidence to suppose that both
exist. This is in line with the previous conclusion obtained by informal

» KC arguments earlier. It should be noted that because of the substantially dis- 50
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proportionate numbers of observarzions in cells. the power o5 :he: eliminating
tests is rather low and the effects are highly confounded. Zndeed, this ex~
ample approaches iclosely the completely confounded case in wmaich all observations
would be in.ﬁhe AlBl and AZBZ cells. Im the completely conﬁnnﬁded case, the
gvoné.degree of freedom between célls could be attributed to-eixﬁef an A effect ’

or a B effect with no possibility of deciding‘between then.

Integpfetation of Results

The patterns~of'possib1e results from the aﬁalysis of ax two factor

design with no interaction are given in Table 6. Pattern I .iudicates that

Table 6

Pattefn of Results—-~Two-way Factorial without Interaction

. Pattern
Test 1 2 3 4 5 6 7
A elininating B 8 ns us ns ns as
B eliminating A s s o ns ns nse
A ignoring B x x ns 8 s ‘ns
B ignoring A x x ns 8 ns s
s=significant ns=nonsigmificant ==irrelevant

A and B are both needed in the model since, given the presence of one, the
other is still significant. ‘Patterns 2 and 3 both Allustrate.casss for which
a second main effect is not needed given the incFuszion of the other, but the
significant effect must be included (i.e., From Pattern 2 we would retain the
A effect, from Pattern 3, the B effect). Pattern &4 is the case f?r which no
main effects are included in the final model. These constitute the standard,
easy to interpret cases and are the only cases which may arise from an ortho~
gonal design. The remaining patterns are unique to the non-~orthogonal case.
Pattern 5 is the seriously confounded situation presen;ed earlier in which only
one effect need be included in the final model, but due to confounding the
choice of which effgct to retain is indeterminant. Patterns 6 and 7 occur

only in situations in which there is very serious confounding in the design.
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The significant main effect should be included in the fipal model. In these
circumstances it is particularly important to ask why such a seriously con-
founded design was produced and to carefully attend to the implication this

has to the phenomena being investigated.

Recommended procedure for a two-way non~orthogonal design
Optthe basis of the material develbped to this point we -suggest the following

procedure.be employed in the analysis of a non-orthogonal two factor design. It

" should be emphasized that this_procedure is for the logical flow of decisions

e

and conclusions which are made in such an analysis, .but does not dictate the
actual order in which the computations need be perfoymed, Indeed, in most of
the standard computer programs available for such an analysis (e.g., MANOVA;

Cramer, 1367) the required tests would be produced in a rather different order.

However, once the results of all required tests are available, we would suggest
rroceeding as follows:
A. Begin with the full model including main and iuteraction effects.

B. Test for a significant interaction (AB eliminating both A and B), if this
test is sjgnificant no tests of main effects are appropriate; however, one
might wish to test certain contrasts in the cell means to aid in inter~
prezation of ‘the results. If the test is non-significant eliminate the
Yij terms from the model and proceed to step C for tests of main effect.

C. Test A eliminating B and B eliminating A

1. 1if both tests are significant adopt the model Y 13 =P +Bj+e

2. 1if only one of the two tests is significant adopt the model Y J=u+ai+e
(if A eliminating B is the significant one) or ¥ J"u+8j+e (if
B eliminating A is the significant one),

3. if neither is significant proceed to D.

D. Test A ignoring B and B ignoring A
1. if both are significant retain either a, or BJ’ but not both in the final

model-~the choice is indeterminant., In this case additional experimental
evidence will usually have to be obtained before much could be said

about the meaning of the experiment.
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2. if only one of the two tests is significant, the significant effect'
should be retained, but the cautions referred to in the discussions
of patterns 6 and 7 should be diligently adhered to.

3. if neither test is significant no main effects should be included in

the first model, i.e., adopt the model Y, =p+c.

ij
Extension to Higher Order Designs

As a aon-orthogonal design becomes more complex through the inclusion
of additional factors the proper analysis becomes far more tédious aithough
the basic logical structure remains the ssné. in all cases we are attempting
to find the simplest model which adequately fits the data by comparing com-~
peting models. As the number of factors increases the total number of
potential tests (model comparisons) increases very rapidly. For a q~factor

design the total number of potential tests is given by

q
[¢,c,-1]
i”'Z_chiz q1

wvhere qC is the number of combinations of q things taken 1 at a time. In

i
most cases, however, no£ all tests will be performed.

Because of certain symmetries which exist in the three factor case, the
extension of the two factor procedure to higher order designs is most easily seen
through the analysis of the three factor design. In general the process
begins by determining if the triple order interaction is necessary. Ifli;
is. not, one proceeds to determine how many and which second order inter-~
action, 1if any, are necessary and finally, in the absence of second order
interaction, how many and which main effects are necessary in the model.

.As a general point it should be noted that when a second order inter-
éct;on is included in a model (say the By term), the main effects impliéd
by that term (in this case B and y) will be also included; the other main

effect- terms (in this case a) may or may not be needed in the model. To

‘determine 1f other main effects should be included requires a separate set

‘ of testé.‘ 53
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Procedure for a three factor non-orthogonal design.

The process bégins by tentatively adopting the full model, Yijkfu+qi+pj+ykf
(GB)ij+(GY)ik+(By)jkf(usy)ijk and then eliminating unnecessary terms. First
one would test the triple order interaction, ABC, eliminating all second order
interactions and main effects, i.e., asking the question--given the lower order
effects do we need the triple order interéction? If the test of the ABC inter-~
action is significant, ome would accept the full model and proceed, if deéired,
to test specific contrasts in cell means to aid with interpretation. If on
the other hand the triple order interaction is non-significant indicating
that the effect is not required in the model, given the possibility of lower

order effects, one would drop the usYijk term from the model and would proceed

to investigate the second order interaction terms ih order to determine how
many and which terms to include in the model.

At thig point in ouf discussion, however, we shall consider the pro-
cedure for main effects rather than second order interactions. We do this
because some of the conéepts carry over directly from the two factor design
and, given certain symmetries in the three factor design, it is possible to
then directly apply these concepts to tests of interaction terms. We must
emphasize that in the actual use Qf the process, tests of secon& order inter-
action would alwvays preceed tests of main effects.

On notation

In order to siﬁplify the naming of various tests (model comparisons) in
the discussion to follow the follo&ing notational'sgheme will be used

(1) the symbol | will be used to indicate eliminating

(2) the ébsencg of a term tO the right of the | symbol of the same order

as the term on the left of the | implies that term is ignored

(3) it is assumed that all lower order terms are eliminated from higher

order terms.
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Thus, for a three factor design wi;h factor A, B, C
,AIB,C_im}lies_the fest of A eliminating B and C
A[B  implies the test of A eliminating B and_ignoring C
| A implies the test of A ignoring B and C.
AB|AC,BC implies the test of AB eliminating AC, BC, A, B, and C-
while AB implies the test of AB ignoring AC’and BC but eliminating A, B, and C.

-

~Tests of Main Effects

In testing for Qéin effects we are trying to determine how many effects
must Se included in the model and which ones they are. .The only circumstance
under which it would be necessary to include all of the main effects is when
each main effec; is significant eliminating the other two, i.e., when the tests
AIB,C; BIA,C; and CIA,B are all significant. If only two of the three tests
of main effects eliminating both of the others are significant, the two signi-
ficant effects would be retained while the thirq"would be deleted from the
model. Thus if all three of the tests or if two of the three tests are ;igni~
ficant our conclusions are quite direct--retain the significant effects.

When, however, only one or none of the three tests is significant the

~ situation is somewhat more complex. If only one of the main effect terms .- <= -

eliminating the other two is significant, say AIB,C, the significant term

.should clearly be retained; however, it may be desirable to retain one of

the other two effects. Since we have already decided to keep the A effect
we need ask do we need either the B or the C effect given the A effect, i.e.,
to test BJA and C|A. If neither of these tests is significant then clearly

neither effect needs be present given the A effect in the model. If one of

-the two is significant, .say C]A, that term,.C, should be inéluded in the

final model aleng with the A term. Should, however, both be significant,
we are in an ambiguous situation. Praovious tests have indicated that all
three effects are not needed in the model and that the A effect must be in

the model, therefore our choice between B and C is completely indeterminant.
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The potentially most éomplicated situation obtains when none of the three
"doubly eliminating' tests are significant. It is still p05§ib1e that one
or two effects should be included in the model. In the two factor
design, we reasoned that the significance of both AIB and BIA indicated that
both A and B should be included. 1Imn the three factor design there are three
such pairs of tests Involving A and B, A and é, and B and ¢ ({.e., AIB and
BIA; AIC and CIA; and BIC and CIB). The joint significance of any one of
these pairs of tests indicate the need to include the relevant pairs of

effects, but only two such effects may be included, our previous tests having

excluded the possibility of all three effects being included in the model.

If more than one pair of these tests shows significance we are uncertain as to

which pair of effects to include. This is analogous to the two factor case
where we were uncertain as to which of the two main effects to include. Should
no paif of effects be significant we are then left with the possibility
of‘including only a single effect in the model. Thus if any one effect were

to appear significént (e.g., if the tests of AIB or AIC were significant)

we would include it in the model. Should none of the "single eliminating"
tests be significant we would then examine the "doubly ignoring" tests, A, B,
and C as these may still indicate the necessity éf including a -single main
effect. If none of these tests are significant we would conclude that no main

effects were necessary and would be left with the model Yijk=P+eijk' If but

one of these tests is significant, that éffect would be included in the final
model. If two or more of the '"doubly ignoring' tests are significant we are
again in an indetexminant situation and may arbitrarily choose one of the

significant effects for the final model, but the choice is completely arbitrary.

Application to two-way interactions
The application of the "main effect procedure" to two-way interaction is

straight-forward if we but note the following symmetry which exists in the three

. factor case. Since there are three two-way interactions and three main effects
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in a three factor model, the pattern of tests for main effects and for two-

way interactions are exactly the same. Corresponding to tests of main effects

A, B, and C there are tests of interactions AB, AC, and BC. For every main

effect test, say AIB,C, there is a corresponding test AB'AC,BC. Hence, the

the above procedure is first applied to the three two-way interactions eliminating
all main effects and other two-way interactions, i.e., ABIAC,BC, AclaB, BC, and
BCIAB,AC, and would then be followed with parallel tests as needed. Should the

conclusion be that there are no interactions, the procedure would then be

applied to the main effects. If there are significant interactions, the factors
involved should be also included as main effects, as noted earlier. Should
only one two-way interaction be included, the question of retaining the uninvolved
miin effect should be considered. To do this the teast of that effect eliminating
the other two main effects and the significant interaction should be performed,
e.g., if it were the BC interaction that were significant one should perform the
test.AlB,C;BC in order to determine if the A effect should be included in
addition to the B, C, and BC effects.
Scome additional comments

The methods discussed for both the two and three factor cases have
proceded on the aésumption that there is no a priori preference for explaining
the data in terms of one factor above any others. Such a preference may exist
in designs such as randomized blocks where we would customarily not even
consider the test of treatments ignoring blocks; we assume that there are block
effects and are willing to consider the presence of treatment effects only
if the test of treatment eliminating blocks is significant. Similar considerations
may apply in a wide variety of cases and may simplify the process discussed here.

Another consideration is the number of tests involved in the complete
proccdgre. Some of these tests will be highly correlated and some will be

independent depending upon the degree and pattern of non-orthogonality. The
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-extreme is illustrated by the two factor orthogonal case in which the tests A

and B are independent while A|B and A are identical. In the case of lack of
knowledge of likely effects one may perform preliminary combined tests such as
aAtest of pooled interaction prior to doing individual tests. This would have
to be moderated, however, by any knowledge which would, a priori, suggest the
existence of speéific effects.

Overall, Spiegel, and Cohen (1975) have considered some of the problems

discussed above and have arrived at very different and demonstrably much more

limited conclusions. Since this is so relevant to balancing,
we will indicate the serious flaws in cheir "proper" generalization of orthogonal

ANGVA

An Analysis of the Recommendations Presented by Overall, Spiegel, and Cohen-

Overall and Spiegel (1969) considered three methods of analysis in nonor-
thogonal ANOVA without favoring any one as being the appropriate one. Overall,
Spiegel, and Cohen (1975) then argued that one of the three methods is indeed
the only proper one to uﬁé. In deseribing how they arrived at this conclusion,
they note that the strategy that "appeared most often to be recommended in
appiied statistics texts involves basically & 'main effects' model with fests
for interaction effects included as a safeguard against departures from additivity
(Rao, 1965; Snedecor & Cochran, 1967; Winer, 1971). The analysis proposed by
Appelbaum and Cramer (1974) follows this logic" (p. lBh).' The argument against
this approach, as developed by Overall ét al., rests upon a single principle which
we velieve to be correct and proper, and a single procedure which is easily
demonstated to be erroneous.

The principle is "that the method for the analysis of variance of data from
noncithogonal designs should estimate the same parametefs and test the same hypo-

theses as can otherwise be estimated and tested in a balanced analysis of variance and
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2xperimental design involving the same factors" (p. 184). This
is consistent with our views since in our 1974 paper we said,

"Having decided to employ the method of least squares...one is

left only with the selection of possible models and model com-

parisons. The models selected are logically independent of the
Oobserved numbers of observations per cell" (p. 336). The key
point which Ovefall et al, ignoré is tﬁe choice of model. Given
a modél, we would argue that our methods test the same hypotheses
and estimate the.same parameters vhether there are equal numbers
of observations or not. In the absence of a model we believe it
to be meaningless to talk of estimating paramgters, much less
testing them.

The procedure Overall et al. propose for verifying that a
particular method”satiéfies the above criterion is "to generate
data for orthogonral and nonorthogonal designs involving exactly
the same @, BJ’ and (ozB)i‘j and then to determine which method of
analysis yields the same parameter estimates in the orthogonal
and nonorthogonal caseé." This procedure is ill-defined since it
ddes not state how such data should be generated. If the example
presented by Overall et al. is meant to make fhe procedure pre-
cise, it is clear that ﬁheir procedure is rPatently inappropriate.
Overall et al. present data arranged in a 3x3 ANOVA with thre.
observations per cell and then duplicate the observations in
certain cells to make the desién nonorthogonal. They state that
"the reader will appreciate that dupliéatidn of certain scores
does not invalidate the analysis of variance" (p. 18%4). Quite

the contrary, it does invafidate the amelysis of variance since
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the observations are ?learly not independent in the various cells.
Furthermore if they claim (as they appear to) that the addition

of observations should not change the estimates of the parameters,
it must be the case that the method lgnores, in generating esti-
mates, any information in the additional observations. How can

a method that ignores such information be a good method?

We have analyzed the data given by Overall et al. and we
suggest that even if one ignores the.question of ihdependence and
follows the procedures we have advocated he will not perform any
tests of "main effects" for the simple reason that there is a
significant interaction in the data which they present. (A ae-
tailed discussion of the problems involved in testing and estima-
ting "main effects" in the.presence of an interaction follows.)
Analyzing their data with the additional observﬁtions, we obtain
.an F vaiue of 6.4 for the interaction which is significant beyond
the .001 level. Given this result we would probably wish to look
at A effects for given levels of B, or B effects for given levels
of A, er poQSibly individuel interection contrasts. .We doubt
that we wvould have any interest vhatsoever in any of the para-
meters that Ovefall et al. obtain or in.any of the main effect
tests they pérform. Indeed, we have made in our earlier
specific ?éégmmendations as follows:

1. Begin with the full model including main effects and

interactinns effects.

2. Test for .a significant interaction; if this test is

significant no tests of main effects are appropriate;

however; one may wish to tést certain contrasts in the

cell means to aid in interpretation of the results.
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Procedures for the Case of Significant Interaction

Since,Ain our previous vork, we were not specific about
what we would do in the case of a significant interaction, it
may be useful to consider our interpretation for this'example.
The cell means and numbers of observetions are as shown in Table
T. C(ur standard ANOVA for an interactive model gives us an esti-
mated standard ceviation of 1.93 based on the within cells sum
of squares. The marginal means sﬁown are the unweighted means
of thé cell means for rows and columné.' fhe significﬁnt inter~
action (F = 6.4, p<.001) tells us that there are effects of both
A and B, but that the A effects are different for different
levels of B'Just as the B effects are different for different
levels of A. It seems clear from examination that the inter-
action is due primarily to the value 11.7 in cell 13. If we
delete that cell we can obtain the test of that.portion of
interaction remaining with three degrees of freedom rather than
four.2 On reanalysis, with the 13 cell deleted, we fihd that
the interacfion is no longer significant (p=.27), strengtﬁ;ning
the bdelief that this one cell is responsible for the significant
interaction. The test of A eliminating B is highly significant
(p<.001) vhile the test of B eliminating A is marginal (p=.10).
It Appears then that if cell 13 is dropped there is definitive

evidence only for an A effect.

2Ana1ysis‘of variance progréms such as MANOVA (Cramer, 1967)
allow :for the complete deletion of specified cells making such
an analysis a simple matter.
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As an alternative or supplementary analysis, we have analyzed
the simple effects of A for each level of B and the simple effects
of B for each level of A. These analyses also confirm what in-
spection of Table T suggests; the siﬁple A effects for lévels onme,
two, anéd three of B are highly significant (p=.009, .7201, .001).
The simple B effects for levels one and three of A sre significant
(p=.001, .03); the simple effect of B for level two of A is not

significant (p=.81).

On Main Effgqﬁgj Margiqql Effects, and Interaction

Additional insight into the nature of tbis problem can be
geined through a more careful consideration of the problems of
testing and estimating "matn effects" in the presence of interac-
tion. At this point it is necessary to introduce a basic logical
distinction between two concepts which have, unfortunately, come
to be held as virtualiy Synonymous-~a main effect and a marginal
effect. By a main effect we mean the effect of a particular
experimental treatment or state of nature which is the common
and consistent effect of that treatment or state of nature irres—
Pective of whet other treatments or states of nature it is com-
bined with. By a marginal effect we mean simply the average
effect of the experimental treatment (stéte of nature) averaged,
in some sense, over all occurrences of that treatment. These
two concepts are equivalent only in the ngninteractiye model;

In the case of a model in which there is an interaction, the two

concepts are quite distinci; in fact, under the interactive model,

the concept of a main e fe.t does not apply, for an interaction

implies that there is no consistent effect of the treatment,
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Table T

Means and Numbters of Observations for Dats from
_Overall, Spiegel, and Cohen

Bl B2 B3
6.0 5.7 11.7
6 3 3
6.3 6.0 5.3
3 6 3
10.3 13.0 10.0
3 6 6
vTable 8

7.8

1.1

Illustration of Marginal Means for Interactive Model

Bl 32 w=.5 w=1 w=0

Al 10 20 15 10 20

A, 20 10 15 20 10
Table 9

Illustration of Marginal Means for Non-interactive Model

Bl 32 w=.5 w=1 w=0
Al 10 20 15 10 20
A, 30 49 35 30 4o
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but rather that dne must consider & treatment in combination
with some other treatment(s) in order to assess its effect,

“his distinction can also be seen through the concept of a simple
row (or column) effect which is commonly defined as the difference
between a cell mean and its corresponding row (or column) mean.
If, 1of a given factor, the simple effect of the several treat-
ments strould be identical for ail levels of cher factors, this
constant =imple effect is the main effect.

Given then that one is operating with a model which contains
an interaction term it is, at best, misleading to speak of main
effects, for one is coﬁsidering marginal effects. These marginal
effects will be averages of cell means across rows or colunns of
the design. There is no rarticular reason for using a simple
everage rather than a.weighted average. If the model is truly
interactive the weights used will have a substantial effect on
the marginal effects. Suppose, for exemple, the cell means are
as shbwn in Table 8 for a two by two ANOVA. If we define a
marginal A mean as .

~

L, 5 v Yy,

+ (1-w) 512
we find that the difference in marginal means for A will be 0,
-10, or 10, depending on whether w is «5, 1, or 0. For the data
from a noninteractive model shown in Table 9, we find that the
difference in marginal means is 20 regardless of what the weights
are.

The tests of mein effeqts proposed by Cverall et al. in

Method I are in fact tests of equally weighted marginal means

for an interactive model. It can also be shown that these tesgts
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+
are eguivalent to the method of unwveighted sguares of means pro-
posed by Yates (1934) and discussed by Bancroft (1968). These
are tests of the equivalence of row or column marginel means
u, = §uiJ/b

and

p., = In.,/a
J i 1

These particular marginal means are but one of many possible sets
of marginal means which can be eonstiucted end it is by no means
clear that this is the most desirable set to test in any parti-
cular situation (see Appeltaum & Cramer, 1975).

We believe then tbat the above analyses feveal essentially
everything there is in the data. As we have indicated, the tests
of main effects recommended by Overall et al. are equivalent to
the tests of equality of margingl means as we¢ have defined thenm.
We do unot f£ind these tests very interesting since the marginal
means represent only average effects for rows and columns, while
the significant interaction tells us that these average effects
are different from the actual effects for each row and column.
The marginal A effect is significant (p=.001); the margins=l B
effect is not (p=.23).

We would argue then that the example presented by Overall
et al. does not bear on the validity of the methods we have advo-
cated, fur the simple reason that there is an interaction present.
Furtherwmore it seems to us that their analysis of "main effects”
is not directed to the questions théf psych;logists will typi-
cally wish to address. We could of course modify their example

"so that the interaction is nonsignificant. Then, as we have
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noted, it would violate the assumptions of Independence. Their

procedure is simply not valid in principle.

Estimetion and the Overall et al. Criterion

Overall et al. have errea in assuming‘that if two methods
estimate the same paremeters, they nust yield the same estimates,
This is obviously false. To est/mate a population mean we could
use 8 sample mean or simply use the first observation, discarding
the others. Both the sample mean and the first observation are
unbiased estimators of the population mean, but they will, in
general, yield different estimates. The sample mean is better
since it will be closer to the population mean on the average.
This precision of estimates is the crucial distinction between the
methods Overall et al. advocate and the methods we advocate.

In our 1974 paper the topic of estimation in the nonorthogo-
nal ANOVA did not appear since we did not believe that there was
any disagreement as to what was appropriate. We now feel that
this topic does require some attention.

Trhe estimation prdblem is easily and completély sslved once
one decides upon the model which one bélieves applies to the real
world. The usual role of significance testing is td determine,
based upon the data of the real vorld, which model is the most
reasonable one from among & set of competing models. Having
made & decision as to which model obtains, one may then proceed
to estimate the parameters of the model--but estimation may occur
only in the context of a parﬁiculaf model.

Let us now consider one possible model--the two factor

interactive model
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YiJ=u+ai+BJ+yiJ+e . - (1)

It is a trivial matter to obtain a set of least squares estimates
of the parameters of this model. We say "a set" because there
are infinitely many sets which are equivalent in the sense that

A

they will yield identical predicted values Y It is, however,

13°
a standard practice to impose additicnal constreints upon the
model in order to obtain a unique set of estimates. The purpose
of the constraining systenm, however, is solely compufational con-
venience. It is obvious that the very best we can do in this
model is to predict the cell means exactly, since there are no
paremeters which are unique to any single observation. Any two
models which predict the cells means exactly must be equivalent.
It is also a consequence of the mathematics of the system that
eny model which has as many independent parameters as cells must
predict the cell mean exactiy.

There exist infinitely many constraining systems which may
be applied to the full interactive model in order to produce the
computational determinacy desired. The simplest of these is

M=o, =B, =0 (for all i and j)
leaving the model

Y + g (2)

13 © Yy
In this case the Least Squares estimates of the YiJ are simply
the observed cell means, Yij'

The more usual (conventional) constraining'system, héwever,
is.

Za, = IB, = Iy = Iy = 0 (3)
i i 3 J 1 i} 3 i) :
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If the design has a levels of factor A and b levels‘of factor
B, there are then (after the imposition of the‘constraints)
1+ (a~1) + (2-1) + (a-1)(b-1) = ab independené parameters which
is also the number of irdepenient parameters in (2). “This 2quals
the number of cells in the design, and'it then follows that the
model ccastrained in this way must be equivalent to that in (2).
For those familiar with the matrix apprnach to the analysis of
variance this result is easily seen from the fact tﬁat the model
matrix for this constréined design must have ab columﬁs.

It is also a rather trivial matter to directly write the
least squares estimates of the parameters.of the interactive

model constrained by (3). They are

=Y
ai = Yi-- Y.n :
- 5 o ()
= Y - Y
BJ ‘J * w
Yig = Yyy - Yy - Y 4+ Y
vhere ¥ is the unweighted average of the cell means while ¥

and Y j are the unweighted average: of the cell means for row i
and column J, respectively. Substituting these estimates inte

(1) gives

Y1J=u+&i+ﬁ

I IMREY

again showing the equivalence of (1) and (2).
We thus see that estimation in the interactive model is
rather'trivial, Wwith the estimates of the parameters being simple

linear functions of the observed cell means and free of the n
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In point of fact there is really no gain in talking of
estimating parameters in (1) since it is equivalent to (25 which
is a cell means model requiring no constraints. We have a x b
populations {one per cell) and the only perameters of interest
are their means and their common variance.

" The situatipn, in general, is not nearly so simp;e when
there is no interection, that is, when estimation proc;eds within

the model

Yi.j =u+_ai+BJ“+e {5)

In general we would have to solve a set of simultaneous least
squares equations in order to obtain estimates of pasrameters in
(5). An exception occurs, howevér, in the orthogonal case in

which the estimates of i, a and BJ have the form as in (}4).

i’

In the more general nonorthogonal case, there will again be
infinitely many solutions to the unconstrained least squares

and u + B, will be

J

equations although estimates of u +rai

unique.

An interesting result of least square estimatlon in (5) is
that the estimates obtained for u, a, and B from model (1) yiela
unbiased estimates of Yij in (5), but the estimates are less
precice, that is, they have larger variances .than the estimates
obtained from (5). For this reason it will be desirable to
estimate the parameters of (5) when we have accepted (5) as the
true model rather than use the estimates from model (1).

We would agree that the procedures advocated by Overall

et al. test the same hypotheses in both the orthogonal and

nonorthogonal case; further, w: agree that they are valid tests
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of certain hypotheses, but we doubt thst they are hypotheses of'
particular interest in either the orthogonal or nonorthogonal case,
We believe that an informed statistical analyst would not perform
a test of main effects in the presence of a significant inter-

action in the orthogonal case; why then in the nonorthogonal case?

The Case of Nonsignificant Interaction

Of course, we can only know in a probabilistic_éense if

there is truly an interaction present in nature. We must in the

final analysis rely on the results of stetistical tests to direct.

us to reasonable models upon which to bdSe our estimation proce-
dure.. This then leads us to ask what behaviof is appropriate
when the data dictate an interaction ffee model and to.coénsider
the consequences of such beha#ior. There are, in this respect,
only three cases which need concern us; in all three we will
assume that the statistical test of interaction is nonsignificant.
Case 1: No interaction in ‘the populatlon

The first case we shall consider is the case whean indeed
there is, in nature, no interaction present. No empirical demon-
stration is needed to verify that if one has the form of the true
linear model, the least squares estimates of the parameters in
that model will be the best unbiased linear estimates. Further-
more, it is completely obvious that if one fits an interactive
model when thére is in fact no interaction, one will obtain
tnbiased estimates which will not be minimum variance. For this
t2ason it is a mistake to include worthless effects in an ANOVA
model, Just as it would be £o ineclude worthless variables in a

regressjion problem. The additional sampling error causes the
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main effect parameters and the estimated cell ﬁeans.to have larger
standard errors than would the estimates from a main effects model.
This point has been noted in a regression context by Walls anéd
Weeks (1969) and is exdactly what would occﬁr if Overall and
Spiegel's Method I were applied in this case. The increase in
sampling error may be quite substantial and will result in less
powerful ﬁests of main effecté.
Case 2: Small bﬁt nonsignificant interactioﬁ'effects

The second case is the situatioﬁ in'which‘there is a true
interaction but its magnitude is too small to be detected by a
conventional test of inﬁeraction. We have previously argued that
the mair effect parameters are not meaningful for.the interactive
model, but that the predicted peil means. are. The predictéd cell
means will have & sﬁalier variance when estimated in the main
effects model.than when estimated in the interactive model’since

the variance depends only upon the design matrix (X i. the usuél

‘matrix approach to ANOVA) and the variance of the dependent

variable. The predictéd cell means will, however, be biased in
this case. Since we can no longer.speak of minimﬁm vériance
unbiased estimators, it then becomes the mean square error which

is relevant for- comparison. We must add the mean squared bias
(which will be a function of the magnitude of the small but nonzero
interaction terms) to the variance to obtain the mean square error.
Tﬁis term will be small if the interactive effects are small as
would be the situation under case 2. Operating under Case 2, we
will still be estimating the same parameters and testing the same

effects in both the orthogonal and nonorthogonal cases, but we
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will simply be estimating and testing with e amall‘amount ot bias.
We will gain substantially in that the estimates will be more
precise and the tests will be more powerful than if we followed
Overall and Spiegel's Method I which is based upon the interactive
model.

To see the difference, let us compare the variances of the
estimated parameters angd estimated cell means for the data ﬁsed
by Overell et al. 1In Table 10 we have computed the Qariances of
the estimated main effect parameters and the predlcted cell means
fer both ‘he main effects model (our procedure) and the inter-
active model (OveralX ana Spiegel's Method I). If X is the matrix
of independent variables, the variance-covariance matrix of pne
estimeted parameters is (x'x)"1g% while the variance—covariaece
matrix of the predicted cell means is X (X'X) *x'g°, The variances
are on the Eiagonals of theée matrices and do not depend upon ‘
which model is correct in natufe. Since 0? serves only as a scale:
factor, we have assumed in Teblelﬁ that it is equal to one. Ve
see that the estimated parameters'of the main effects model have
slightly smaller variances than those of the interactive model,
while the corresponding predicted cell means have substantially

8maller variances when estimated from the main effects model.

_The effect on the Predicted cell means is particularly marked

for the cells with a small number of observatlons, 51nce the

.variance of a sample mean (the predicted value for an interactive

model) is simply g /n.
Caseié: A large-interaction which is not detectegd

The third case covers the situation where a large interaction
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Table 10

Variances of Parameter Estimates and Predicted Cell
Means for 3x5 Factorial Design with Unequel Numbers

of Observations Assuming 02 = 1.

Main Effects Model. - Interactivé Model
Perameters
Estimatesd
TR : .161 | | 169
oy .éhl | .24k
a, ' .235. .24y
By o Lam | BN
B8, ?22h S | .231
Estimated
. Cell Mears
fll .116 } . .167‘
) Y, .151 : .333
§13 .158 © +J33
¥, .158 ~ .333
fez .112 167
¥, .15k | .333
o, 151 | .333
§32 .109 | ) 167
£, .112 167
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is somehow not detected by the interaction test. In this situa-
tion the reverse of Case II will occur anad the mean square errors
of the estimated parameters and cell means will be small for the
interactive model. The probability of this third case occurring
is, however, remote, for if the magnitude of the interaction
effects is large and if the sﬁmple size is reasonable the power

of the interaction test is quite.large..

We have shown above that the significance testing

procedures which we have previously recommended for the nonortho-
gonal ANOVA are consistent with the basic principle advocated by
Overall et al.; namely, that in the nonorthogonal case one should
estimete the same parameters and test the same hypotheses that
one would estimate and test if there were equal numbers of obser-
vations in the cells. 1Indeed, that pPrinciple .is 1mplicit in our
original paper. We have pointed out that our method of fitting

& series of main effect models (in the abssence of interaction)

is égi the same as their Method II. We have further shown that
their method for achieving the stated goal is incorrect and, if
}outinely applied, will not 1lead tov0ptimal tests or estimates.

" In discussing the relationship between estimates and hypothesis
testing we beliéve that we have made clear the reasons for pre~
ferring our procedure since it leads to more powerful tests and
more precise estimates.

.It must be recalled that the issue of how to estimate effects
and how to test_hypotheses are rather distinct. The methods

discussed by Overall et al. and by us are methods for testing
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hypotheses and mot for the estimation of
tion is not one which we uniquely make.
regards these as distinct pProcesses. He

model, performs tests of significance to

model is eppropriate, and then estimates

simplest reasonable model. We have seen

effects. This distinc-
Bock (1975), for instance,
begins with some initfal
determine if a simpler
the parameters in the

no evidence which sug-

gests that the methods edvocated by Overall et al. are Preferadle.

We continue to maintain, along with Reo and others, that one

should test main effects, assuming no interaction to be present,

vhen this is what is suggestead by the datsa at hand.
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Chapter 1IV: A Comparison of Balancing and Other Methods of Adjustment

Several alternative methods are available for adjusting for group
differences in a dependent variable when the groups are not randdmly
constituted and tpus-may exhibit systematic differences on interfering
variables that are related to the dependent variable. The bes£ known of
these'methods is analysis of covariance. Other methods, tased upon
somewhat different assumptions, include direct and'indirect standardizetion

and balancing.

76



~T6-

Analysis of Covariance

Anélysis of covariance (see, e.g., Elashoff, 1969; Tatsu-.
oka, 1971) assumes that, in the population of interest, the
i'th person in the J'th group has a score YiJ on the dependent
variable that can be expressed as :

Ty T By -0 ey

(vhere uJ = U + aJ). In this notation uJ is the adjusted pop-~

ulation mean on the dependent veriable for the J'th group; B
is the within~group regression coefficient; xij is the score

- on the interfering variable (the variable for which adjustment S e
is made) for the i'th person in the J'th group; X is the mean '
score of the observetions over all groups on the interfering

.- -variable; and, eij is an error term for the i'th person in the

J'th group. The mean score on the dependent variable Pfor the
J'th group can be expressed as ,

YJ =‘UJ+8.(XJ-X)4+QJ 9

where iﬁ is the mean cbserved score on the interfering variable
for group J and EJ.is the mean error term for group J.

For more than one interfering variable, a model of the
following form is used:

i,=u, 1@ xlm)_ gy g
1"k 3

J J

where Bém) is the within-group multiple regression coefficien’

for the m'th interfering variable; i(m) is the mean score for

J
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. ( .
the J'th group on the m'th interfering variable; and, X'm) is
the mean score over all groups on the m'th interfering variable.

Least squares estimates for the parameters of the model
are obtainable and parameter values can be replaced by these
estimates to. obtain an estimate of the adjusted mean score for
the J'th group,

’ A
u

C3 g o o(m)  olm)
= YJ ﬁ B (xJ Uy .

Balaﬁéing, Direct Standardization, and Indirect Standardization

With one interfering variable, the model used in balancing,
direct standardization, and indirect standardization is the
additive analysis of variance model. This model assumes that
in the population the i'th person in the J'th group with a
- score at the k'th level of an interfering variable has a score
YiJk that can be expressed as

Ligg WOt e o
or
Yage SWg ¥ Ve tegg -

The mean score for persons in the J'th group and the k'th level
of the interfering variable then can be expressed as

. } . _ '
o =¥y * e+ e

In this notaticn uJ is the adjusted mean (in the population) on

the dependent variable for the J'th group and Yy is an effect

associated with the k'th level of the interfering variable.

With mcre than one interfering variable, balancing still
may be employed, based upon the additive analysis of variance
model. . Direct standardization and indirect standardization
usually are defined only for one interfering variable. However,
each can be generalized to accomodate rnore than one interfering
variable. The generalized model for either direct or indirect
standardization also allows for all possible interactions among
the interfering variables. For example, for three interfering
variables, balancing employs a model of the form
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Yok =My * Ve ¥ S * Tt ey B

generalized direct and indirect standardization are not re-
stricted to an additive model and may use a model of the form

YJk&m =W tY * S, 4 Tt Yo p * YT * 6r£m + YGTkZm + ©Jjxln .

More will be said about generalized direct and indirect stand-
erdization in a2 later section.

"While the analysis of covariancz model (of the previous
section) can treat interfering variables either as continuous
or discrete, these analysis of variance models must treat all
ipterfering variables as discrete, since each is to be cate-
gorized by level. However, measurement on a continuous vari-
able must always result in observed values on a discrete vari-
able, since th® measurement process yields a finite set of
possible values while the number of poszible values of a con-
tinuous variable is indefinitely large (see Jomes, 1971).
Thus,. the operative distinction is that, with ANCOVA, an inter-
fering variable may be measured with an indefinitely large
number of score categories, while with balancing and standard-
jzation (direct and indirect), it is desirable that the number
of score categories be limited. Results given by Cochran
(1968a) suggest that only a slight loss of precision is asso-
ciated with categorizing a continuous variable and then using
standardization instead of using analysis of covariance with
the original continuous variable as the covariate. Since-we .
wish to compare ANCOVA, standardization (direct and indirect),
and balancing, the remainder of this discussion assumes that
variables are discrete, 2ither because this wag their original
form or because they have been categorized.

Balancing -- The technique of balancing was developed for
the National Assessment of Educational Progress in an attempt
to present estimates of educational achievement that are rela-
tively unccntaminated by interfering variables (see National
Assessment of Educational Progress, 1973). Appelbaum and
Cremer (1975) have shown that the estimates of parameters from
belancing are the least squares esiimates from an additive ana-
lysis of variance model, obtained ty solving the normal equa-
tions. The primary estimates of interest are the estimates cof
the adjusted mean scores, the ﬁju

There is a systematic relastionship between estimates ob-
tained by ANCOVA and balancing when interfering variableg are
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discrete. To understand this relationship, it must te realized
that nororthogonal ANOVA estimates can be obtained ty using
orthogonal polynomial contrasts for each interferins~ variable
as covariates in the ANCOVA model, since both LIOVA and ANCOVA
are part of the general linear model (e.g., Bock, 1975, chap.
5; Cohen, 1968). Analysis of covariance, however, uses only

. the linear trends of each factor as covariates, while bal-
ancing uses all trends of each factor as adjustment variates.
Thus, estimates from the ANCOVA model are equivalent to those
from a balancing model that assumes all trends other than the
linear to be equal to zero.

, The choice between using balancing or ANCOVA involves a
‘trade between bias and variability of the estimates. Parameter
estimates obtained from a model are unbiased only if “hat
model is valid in the population (Draper and Smith, 1966).
Analysis of covariance, unlike balancing, requires that all
nonlinear trends be zero in the population if its estimates
are to be unbiased. Thus, estimates from ANCOVA are at least:
as biased as estimates from balancing. On the other hand,
since the parameters of the ANCOVA model are & subset of those
cf the balancing model, and since both models may be conceptu~
alized as regression models, the variance of balanced estimates
must be at least as large as the variance of estimates from
ANCO?A (see Walls and Weeks, 1969, for the general regression
case). : : -

When it is certain that the relations between the inter~
fering variables and the dependent variable are egssentially
linear, analysis of covariance is to Ye preferred to balancing,
since estimates from both models are unbiased but those from
the ANCOVA model are less variable. Wren relations are mate~
rially nonlinear, balancing is generally to be preferred to
ANCOVA, but the magnitude of nonlinear trends snd the sample
‘size both should be considered. Estimatse Trom balancing are
"less biased than those from analysis of covariance; the dif-
ference between the sguared biases of the estimates from bal~
ancing and from ANCOVA depends upon the magnitude of nonlinear
trends and is independent of sample size. However, the dif-~
ference between the variances of the estimates from balancing
and from ANCOVA is inversely proportional to sample size.

With few observations, the difference between the variances is
more likely to exceed the differences between the squared
biases, in which case ANCOVA has the smaller mean-sguare error
end on that basis ANCOVA is preferred to balancing. With a
-sufficient number of observations, however, the difference be-
tween the variances is uplikely to exceed the difference be-~
tween the squared biases, in which case balancing, gith a
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smaller mean-square error, is to be preferred. (Aa alternative

under these conditions, not considered here, is a generalized
ANCOVA, which adjusts for some subset of the nonlinear trends.)

Direct standerdization ~~ Direct standardization has been
used extensively by demographers, bicstatisticians, and health
researchers desiring to adjust for interfering variables in ...
the comparison of group effects. Basic references for direct”™
standardization are Fleiss (1973) and Kalton (1968). An exam-
ple of the use of direct standardization is presented by Moses '
(1969) in connection with the National Halothane Study, where
the desire was to assess the effects of halothane and other
anesthetics on death rates, taking account of the differential
patient characteristics associated with the use of various
anesthetics.

- With one interfe: ng variable, direct standardization is
based cn the same mode.. as balancing, but involves a different
procedure for estimating parameters. The first step in this
procedure is to estimate parameter differences of the form
aJ - aJ" where j and j' represent distinct groups. Direct

standardization estim’ - s this difference to be

o~ r e Ty
a, -0, = -
3oy Ty

k

where the Vi represent weights chosen by the experimenter.

Kalton (1968) has shown that, when adjusting for one intex-
fering variable and comparing the means of two groups, a mini.-
mum variance estimator of this difference (assumed to be con-
stant for all k) is obtained by choosing weights such that

v = By ok
k nlk + n2k

This derivation assumes equal variance within each cell of the
design. While the assumption is unlikely to be valid for pro-
portions, Kalton (1968, pp. 127-12.° shows that for proportions
this choice of weights usually is adequate and sometimes is
preferable to the use of weights obtained assuming unequal cell
variances. Thus, the diffc.ence between the means of the two
groups at a particular level of the interrering variable is
weighted inversely proportional to the variance of the differ—
ence between the mean.. Intuitively, when both groups are vell
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represented at a particular level of the interfering variable,
the variance of the difference between the group means will be
relatively small, and that level of the interfering variable
will receive a relatively large weight in the estimate of the
adJusted difference between the group means. Kalton states,
"If the YiJk are normally distributed within subgroups, this

model is the usual fixed effects analysis of variance model,
with

w (Y., -Y.)

N ok k 2k

% -0y = Iw
X

k

estimating a mein effect" (Kalton, 1968, p. 123; the notation
is changed to correspond with that used here). Direct stand-
ardization with these minimum-variance-producing weights will
yield the same estimates as balancing, i.e., the estimates
from &n addilive analysis of variance model, with or without
& normal error distribution.

Snedecor and Cochran (1967) show *hat, in an additive
two-factor analysis of variance model where one factor has twc
levels, the estimated differential effect for that factor is
‘given by

1k%x o -
b ” g me T Yad
[0 Q, ’
1 2 . nlkn2k
k P T Pax

confirming that ‘direct standardization with this choice of
weights does produce the same estimates as the least-squares
estimation procedure of an additive analysis of variance model.
When both factors have more than two levels, however, this
choice of weights does not in general yield the same estimatocs
as the least-squares estimation procedure used with the addi-
tive analysis of variance model. Thus, when more than two
groups are to be compared, the weights presented by Kalton
(1968) will not produce the same estimates as an additive ana-~
lysis of variance procedure. Intuitively, this can be unde=-
stood by noting that a comparison of two of the groups by
direct standardization completely ignores all other groups when
adjusting for the effect of the interfering variable., 1In con-
trest, the standard estimation method under the analysis of
variance model uses all groups to estimate the effect of the
interfering variaole.
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The remainder of the discussion of this weighting proce-
dure assumes that only two groups are to be compared.

While direct standardization usually has been used only
when one interfering variable is to be adjusted for, the proce-
dure can be generalized to more than one interfering variable,
For exzmple, consider three interfering variables with K, L,
and M levels. This design can be re-expressed.as a design with
one interfering variable with KxLxM levels. ' Direct standardi-
zation with minimpm~variance-producing weights for this design
will then yield the same estimates fecr adjusted group means as
would the standard estimation methods for an analysis of vari-
ance model of the form

Yytm = Hy * Yo * Sp + v 4 ¥8p 4 yT, + ST,
* YTpm * Cygtm

With « -e interfering variable (and only two groups) bal-
ancing and direct standardization give the same estimates.
With more than one interfering variable, the estimates from
balancing &and direct standardization generally will differ.
Direct standardization requires that there be at least one ob-
gervetion for every combination of the interfering variables,
80 that

Dilm * Poppog * O

for ail k, £, and m; othexrwise, estimates cannot be obtained
in this model, because division by zero would be, required.

In this study, involving five interfering variables, direct
stardardization is not employed because this requiremerit fails
to be satisfied. '

Another weighting procedure for direct standardization
seems to be more widely used than that described by Kalton
(1968). This procedure, described by Fleiss (1973), Cochran
(1968a), and Moses (1969), uses weights of the form
v = Xan = 1., so that : :

J
AN Iy )
@ - ay, = T .
c M
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Both this weighting procedure and Kalton's (1968) yield unbi-
as2d estimates of the group effect in the analysis of variance
model, but in general the variance of the estimate based upon
this procedure is at least as large as the variance based upon
Kalton's procedure. Intuitively, this procedure takes into
account only the total number of observations for a level of
the interfering variable; vy neglecting how this total is dis-
tributed for the different groups, an unstable estimate of the

.. mean for a particular group at some level may receive a large

weight with this procedure. This weighting procedure requires
that no cell in the analysis of variance design be empty. For
example, given three interfering variables with K, L, and M
levels, this procedure requires that

Dyfm 7 O

for all j, k, £, and m, a nore stringent requirement than for
Kalton's procedure. Thus, this weighting procedure, although
the one usually used, has no advantages over the weighting
procedure presented by Kalton (1968); Kalton's procedure does
possess several advantages over thi: alternative procedure,

Indirect standardization -- Indirect standardization has
been used even more extensively than direct standardization by
demographers, biostatisticians, and other medical researchers,
according to Fleiss (1973). The probable reason for the
greater usage of indirect standardization is that, unlike the
usual form of direct standardization (as presented by Fleiss,
1973), indirect standardization does not suffer from the prob-
lew of assigning large weights Lo unstable cell means and it
may be used even if a cell in Lhe design is empty. An example
of the use of indirect standardization is again the National
Halothane Study, discussed by Moses (1969).

With one interfering variable, indirect standardinzation
is based on the same model ss balancing and direct standardi-
zation, but employs a different method for estimating para-
metars. There are two approaches to indirect standardization,
both of which have been developed only for one interfering
variable. However, for more than one interfering variable, a
generalized indirect standardization Procedure can be defined
in & manne:r analogous to that for direct standardization,
where the design is re-expressed as a design with one inter-
fering variable. The following discussion assumes there to be
only one interfering variable, either because this is the
original design or because the original multivariable design
has been re--expressed.
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One approach is that given by Wiley (1973). Whereas balan-
cing obtains estimates by solving the normal equations to arrive
at a simultaneous fit to the data, indirect standardization as
defined by Wiley obtains estimates in a two-step process. First,
estimates of the effect associated with each level of the inter-
fering variable are obtained in a model that assumes no main er-
fect to be associated with group (i.e., the model assumes @ =0,
for all J); the mcdel thus is of the form J

ij =} + Yk + eJk .
Least squares estimates are obtained for M and Yk' These esti-
mates are given by R

U = G (the weighted grand mean) |,
and ‘

]
o]
|
(2 1]

Yk k. ¢

" Second, these estimates are used to obtain the estimated adjusted

score for the j'th group in the model with two main effects,
Y. =Uu +0_ + e
ij H 3 Yk + e

UJ + uk - U + eJk

Jk

It now will be shown that when Uk and U are constrained to Yk and

is given by

J

G respectively, the least squares estimate for H
Y)

-~ i e e = Y
Uy =G+ — ,
, J

the estimated adjusted score of Wiley's approach. The squared
error for the j'th group is given by:

- -~ 2
i an(YJk - YJk)
which equals ’ _ -~ N ~
i By (T = (g v —u))®

A

Substituting uk =Y and u =

Qi

X and setting the derivative with

respect to U, equal to zero,

J



-2In Y +8)=o0
k
: Bl = G+ ng8 = nu
ﬁ njk(YJk - §) “
G + — =y, .
nJ J

To compare Wiley's formula with those for balancing and
direct standardization, we can compute
M, - =a, -0
J J! J J!
ian(YJk - Yk) i inj.k(yj,k - Yk)
G + - |G +
n n

J 3!

When comparing two groups (the case for which adjustment
techniques are most often used), indirect standardization as
defined by Wiley provides the following estimate of ﬁl - ﬁ2:

A ﬁ[n2nlkylk " Pafaica * (ayg - mpny )Y ]
IR T
1 2 . n,n,
Since - _
s e S
Yk = 2., +n ‘ ?
1k P2k
nen g (n) + mplnyynyy (B, = Tp)
1 R n1n2(nlk + n2k)

This can be iewritten as

;l - ;2 = nln+nn2 L nnlkaﬁ (?lk - Y2k)
| 172 x Pae * Pk
: | P1x"ok (F. - %)
i} (nfnz) (2 nlkn2k) k PaktPac Ik 2K
172/ \x "ok 5 Pael2K
k "1cox
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But the third expression in parentheses is the estimate for -
balancing. Thus,

(homn) - (22 () Puax G
3 1 @ : .
1 T2°Wiley n,n, X n]]+n2k 1 "2'Balancing

Wiley's estimate of the group effect equals the balancing esti-
mate (and thus also equals the estimate from direct standardi-
zation) if and oniy if

0,0, . 11 x%ok
- ]
nl + n2 Kk nlk + n2k
that is, if and only if
Zn.. - In
g _y Dy Do
i (nyy + 0y )~ g ¥ ng

Another approach to indirect standardization, discussed by
Fleiss (1973), involves multiplication of the grand mean esti-
mate by the estimated mean unadjusied score of the j'th group,
and division of this proeduct by the mean score that the J'th
group would have received if its mean score on the dependent
variable within each level of the interfering variable had been
the seme as that of the population. This approach uses the
same estimates as Wiley's approach but combines them in a mul-
tiplicative rather than an additive fashion. Tt yields an esti-
mated adjusted score for the J'th group that can be written as

~ GY
A
IY¥n
K k" ik
nJ '

2

LR S 1l o |
=

E
r—- (|

P
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An evaluation of indirect standardization -- Analysis or
covariance, balancing, ani direct standerdization have veen
compared and contrasted, with a discussion of the relative
merits of each. Still to be discussed is the relative valua
of each of those approaches compared with indirect standardi-
zation when adjusting for only one interfering variable.

TABL™ . T

Numbar of Subjects and ..~ Score by Group
Within Each Level of the Interfering Jariable

Group 1 _ Group 2 . Marginal
Level of N N=1 N=1 | m=2
Interfering Y=20 Y=10 Y=15
Variable -
2 N=1 N=2 =3
¥=bo ¥=30 ¥=33.3
3 N=2 N=3 N=5
Y=60 Y=50 Y=54
) =9 Nk ¥13
Y=80 Y=T0 =77
5 _=2 _:S 1-\]'=T
Y=100 Y=90 ¥=92.¢
Marginal N=15 N=15 N=30
¥=73.3 ¥=63.3 ¥=68.3

Two examples are cited t: illustrate certain features of
the two alternative estimation Procedures for indirect stand-
ardization. First, consider the fictitious data given in
Table I'. Witain each Eroup, there is a perfect linear rela—
tionshin between the interfering variable and the dependent
varisble. Also, at each level of the interfering variable,
Group 1 has a mean g¢core 10 points higher on the dependent
variable than does Group 2. lNote also that the frequency
distribution of scores on the interfering variable is quite
different for the two groups.
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TABLE 11

Adjusted Mean Scores from Table V

Group 1 Group 2 Difference
Wiley T2.71 63.96 8.75
Fleiss 72,67 63.92 8.75
ANCOVA 73.33 63.33 10
Balancing 73.33 63.33 10

Adjusted mean scores for the two groups &s derived from
each adjustment technique are given in Tabie II. Analysis of
covariance and balancing both estimate the difference between
adjusted scores to bte 10, while either method of indirect g
standardization estimates the difference to be slightly less
then 10. Bu. the evidence is that, within any level of the
interfering variable, the difference is in fact 10, so this is
the desired difference between the adjusted scores. Analysis
of covariance and balancing both recover this difference, in
contrast to both forms of indirect standardization.

As a general rule, analysis of covariance will recover the
desired differerice whenever there is no interaction between the
interfering variable and the grouping and all higher-order
trends are zero in the data. Balancing will recover this de-
sired difference whenever there is no interaction between the
interfering variable and the grouping. When there is such an
interaction, the meun score difference between groups varies
depending on the particular lovel of the interfering variable,
so there 1s varying evidence on the difference between the
groups. 1In general, indirect standardization will not recover
this desired difference.

A second examp:l. .:nows another way in which either ap-
proach to'‘indirect susi:dardization may yield misleading results.
Consider the data in icble ITI. For these data, Group 1 has a
mean score of 60 at every level of the interfering variable,
while Group 2 has a mean score of 40 at every level. In addi-
tion, there is little overlap between the two groups on the
interfering variable; only for level 3 are there observations
for both groups, and here, as elsewhers, Group 1 has an average
score of 60 while Group 2 has a mean score of L0, It seems
reasonable to conclude that within grouns the interfering vari-
able and the dependent variable are unre:: ced; instead, group 1
members tend to score higher than Group 2 :embers on both the
interfering variable and the dependent variable.
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TABLE III

* Number of Subjects and Mean Score by Group
Within Each Level of the Interfering Variable

Group 1 Group 2 Marginal

Level of 11 N=0 N=50 N=50

Interfering ¥=ko Y=ko
Variable —_—

5 N=0 N=25 N=25

Y=ko Y=ko

3 N=25 N=25 N=50

Y=60 Y=LO Y=50

L N=25 N=0 N=25

¥=60 - Y=60

5 N=50 N=0 _ N=50

Y=60 , ¥=60

Marginal N=100 N=100 N=207

Y=60 Y=ko Y=50

Both analysis of covariance and halancing support ‘is
conclusion, as seen in Table IV, The adjusted score [or each
group equals the unadjusted score for the group. Indiraect
standardization, however, gives the impression that the differ-
ence between the mean scores of the groups can be explained by
their being different on the interfering variable. The adjusted
rates cobtained from indirect standardization are very nearly
equal for the two groups.

TARLE 1V
Adjusted Mean Scores from Table III

/ Group 1 Group 2 ifference
Wiley 52.50 47.50 5.00
Fleiss ' £2.17. 47.06 5.11
ANCOVA 60 Lo 20

Balancing 60 Lo 20
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Adjusted mean scores obtained from balancing will djffer
from unadjusted mean scores if and only if the interfering
variable is related to the dependent variable within each group
(homogeneity of the relation is assumed) and the groups have
different means on the interfering variable. For analysis of
covariance, there is the additional restriction that adjusted
scores will differ from unadjusted scores only to the extent
of linear relationship. Indirect standardization, on :he other
hand, may give adjusted scores that are different from the
unadjusted scores despite groups having the same mean on the
interfering variable (see Tables I and II), or despite there
being no {within group) relation between the interfering vari-
a8ble and the dependent variable (see Tables IIT and IV).

With reference to admission Jata, let us consider an exam-
ple of how either approach to indirect standardization may be
misleading. Suppose that in Table III, Group 1 represents male
applicants, Group 2 represents female applicants, and the inter-
fering variable is height. In these hypothetical data, male
applicants all have heights which place them in level 3 or 4
or 5, while female applicants all are placed in level 1 or 2
or 3. Male applicants have an average admission rate of 60
percent regardless of their height, while female applicants
have an average of 40 percent regardless of their heigant.

There is no relation between height and admission within sex,
i.e., an admission committee does not act on the basis of an
applicant's height. Thus, in all probability, if the average
height of women were to increase, their admission rate would
stay the same. But indirec: standardization leads us to be-
lieve that if women were only taller, they would be accepted

at almost the same rate as men. From the results of indirect
stendardization, it wculd seem that males and females are being
accepted at nearly the same rate, once we take into account the
difference in aversge height. But results obtained from bal-
ancing and analysis of covariance will yield zn adjusted admis-
sion rate for male applicunts of 60 percent and a rate for fe-
males of 40 percent, implying thet the admission rate for males
would remain substantially higher than the rate for females

. even if the average height for female applicants were to in-

Crease.

The example given in Table III is an extreme case iltlus-
trating a possible difference between results obtained by indi-
reci. standardization and results from balancing and- analysis
Oof covariance. Both of the latter techniques rely on the rela-
tion between the interfering variable and the dependent variable

within each group. Such a relation hould be found (except for

chance error) if and only if the interfering variable is zxerting
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an influence on the decisions of the admission cormittee, in
which cuse it is reasonable to predict that if a group's mean
Score on thz interfering variable were higher, the group's
admission rate also would be higher. When it is desired that
adjustment be made only for such a "within-group" relation,

the use of either baiancing or analysis of covariance is always
preferable to the use of indirect standardization.

" In general, indirect standardization seems to offer no
advantages over balancing, but seems to suffer from several
disadvantages. The only advantage indirect standardization
has over analysis of covariance is that it allows for a non—
linear relation between the interfering and the dependent var-
iable, but balancing also makes this allowance. Thus, it seems
that either balancing or analysis of covariance should be used
to obtain adjusted scores. '
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Chapter V:  "Smear snd Sweep” Auslysis

One of the seconda.yy objectives of this grant was the investigation of
other dats analytic techniques used to adjust for nuisance confounding in ihe
NAEP :tudies. One such technique (and the only other "non-standard" technique
of major consequence) is that known as smear-and-sweep. The following chap?
gives the basic res;lts on smear-and-sweep and its relation to balancing and

the nonorthogonal analysis of variance.
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Ia many behavioral or social research situations, researchers may want
tc estimate trestment effects or the relationships between input.&nd output
variables, while controlling for a aumber of extraneous variables. Some uethods
of analysis use the input and the extraneous variables to form multifactor
classificéfions, and then estimate the treatment effects or relationships,
adjusted for the effects of extraneous variables. A large number of varigbles
available in the data may thus be selected to form multifactcr cross-clasgifica-
~tions, resulting in few observations per cell, indeed some cells in the
crossed-classified may have no ooservations. For example, if 2500 sixth-grade
students are involved in a study of educational progress, and later stratified
into subgroups Ey region of the country (four levels), sex, race (three levels),
type of community (seven levels), and parental education (five levels), they
will be distributed over 840 cell combinations giving an average of about three
observations per cell. Witk this many cells the data in each cell become oo
sparse to allow stable estimates of cell ralues, and direct control on all the
extrareous variables by multifactor classification may, therefore, be impractical.

Smear and Sweep Analysis

One method developed for the d. .... data resulting from the after-the~fact
classifications is the Smear-and Sweep analysis. This method first appeared in
the report of the National Halothane Study (Gentleman, Gilbert & Tukey, 1969)
in which the death rate of the patients in operations using Halothane as
examined. It was later considered by the National Assessment of Educational
Progress (NAEP) as a possible method to obtain sharper subpopulation weights
(see Ahmann, 1973, pp. 108-109).

Smear—énd-sweep is a method that first pools the cells of the control

variables in a cross-classification table into categories in which the cell

-
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values (e.g., proporyions, ratios, means) are reasonably similar, and then
calculates and compares the "effects" for an independent variable of interest
a8cross & rinal set of c2legories. Tie basic strategy is to form a two-way

table on twe of tie conptrol varigbles at a time. (This step is referred to

as smearing.) The cell5 of this table are then ordered on a single dimension
according to the velye of the dependent variable in the ceils. Tre: value of
this dependent variable hay be simply the observed data, Least Squares estimated,
or statistically sdjust 2 values, Then the adjacent cells are pooled into a
smaller number of categoties Wwi:ich define the levels of a new conglomerate
variable. (This step i5 referred to as sweeping.) The process is then repeated
by formirg another cjassifi_stion table consisting of the newly formed conglo-
merate variable and another control variable. This brocess is contirued until
only a single conglopgerate variable remains. The final conglomerate variable

is then cross-classified witp the independent variable of interest. This tabl:
is then used to compute Marginal estimates and pe'orm some comparisons among

the levels of the indgepeRdent variable of irterest, using ~lassical techniques
o

such as analysis of variance. /Qg;~<“_ WA

The essence of this metpbod is that it permits the researcher to handle
many known and availgble variables as control variables. The process of Smear-
and-Sweep will presumably coptrol or minimizr the effects of extraneous variables,
and thus allows better eStimstes of the effects due to the independent variable
of interest. By using tWo vsriables at & time, tL. number of observations in
each cell combination mg¥ be large enough for stable estimates.

An Illustraticn

Smear-and-Sweep apalysiS is illustrated by the following hypothetical
data set. A probabiljty sample of 1,933 high schocl graduates were given a

science test. Their tes! scores were scored either 1 (pass) or 0 (fail).

ERIC | 9%
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Suppose that, using this data set, a researcher was interested in testing
ethnic gronp on thgwstudents' test ccores affer contro© g Tor sex, region,
socioeconomic (SES),.AQA high school curricular program (HSP). The researcher
could use a muitifactor design, and apply analysis of variance to obtain
adjusted marginal estimates for ethnic groups; however, in so doing, the
observations within each cell combination would te very zparse. Many cells
would hsve two or three observations while some other cells would nave none;
the cell sizes might not be sufficient to provide stable estimates.

Given these problems, the researcher chose to use a more "data analytic"
approach, namely Smear-and-Sweey. The rescarcher first cross-classified
students on the basis of their socioeconomic background and high school Lro-
gr#ﬁ ﬁHSP). SES had three categories: high, middle, and low in correspondence
with upper quartile, middle two quartiles, and lower quartile of the SES
pomposite scores, respectively. HSP was defined by college preparatory
(academiz), reneral and vocational-technical (voc-tech) programs. The propor-

tion of pass for each cell combination was computed as follows:

where Sij is the pumber of students who had a score of 1 in the i'th SES snd

j'th HSP, and Nij is the total number of respondents in this céll.

The obtained proportions were theﬁ'd}dered, and their corresponding cells
were grouped intd five categories as indicated in Table 1. The criterion for
grcuping was that the range of proportions in each category should not exceed

-05. These five categories comprised a nsv "conglomerate" variable; each

category incorporating some "effects" due to SES and HSE.
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Table 1

Proportion of Pass for SES and HSP
" Cross-Classification Groups

_ High School Proportion
SES Program of Pass Category
High Academic .82 1
Middie Academic 67 2
High General .56 ) 3
Low Academic .55 3
_High Voc-Tech ) 3k - b
Middle General ; .32 L
Middle ‘ Voc-Tech .22 5
‘Low - General .22 5
Low ' Voc-Tech .17 5

The newly formed conglomerate variable was then cross-classified with
four geographic regions and resulted in a four-by~five classification table.
The cell vaiﬁégﬁ(i;e., proportions) of this table were calculated; and th;
cells were grouped in accordance with the rﬁles described previously. The
results are presented in Table 2. As seen in the table, the new conglomerate

variable included seven categories as indicated by the number in the parentheses.

Table 2

Proportion of Pass for Region and the
First Conglomerate Variable Combination Group

Conglomerate Variable

Region 1 ' 2 3 L 5
Northeast BU(1)*  ,70(2) .60(3) .26(7) .26(8)
North Central .82(1) .65(2) .52(5) .30(7) .21(8)
South .82(1) 64(3) . .56(k) .36(6) .19(8)
West .80(1) .67(2) .58(k4) .34(6) .30(7)

*Thé»figures in parentheses denote the levels of newly formed variables.
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Similariy,‘the second newly formed variable was then crossed with two sex
groups to for a two-by eight classification table. The proportion of pass in
each cell combination is presented in Table 3. Again, the proportions were
ordered, and their corresponding cells were grouped into catégories,.ﬁs indi-
cated by the number in the parentheses, based upon the same critefiop that the

range of proportions in each category should not exceed .05.

Table 3

Proporticn of Pass for Sex and the
Second Conglomerate Variable Combination Group

Sex T 1 2 3 y 5 6 T 8
Male 82(1)% - ,69(2) .62(3) .53(L)  .53(k) .34(5) .30(6) .20(T)

Female .83(1) .67(2) .64(2) .60(3) .s50(4)" .36(5) .28(6) .18(T7)

¥The figures in parentheses denote the levels of newly formed varisble.

The last newly formed conglomerate variable was then cross-classified
with ethniec group, which was the independent variable of interest. There were
four ethnic groups: blaék, white, Hispanic (Spanish American), and others. The
resulﬁing four-by-seven table and its cell values are presented in Table L.

The last column of the table presents the adjusted average of cell proportions
for each ethnic group. No substantial differences among ethnic groups were
revealed, although whites ﬁad a slightly lower proportion than other groups.

It should be hoted, hbwever, that these adjusted estimates were quite different
from unadjusted ones. Hgd the'proportions beeh estimated without cortrolling
for sex, region, SES and HSP, the estimates would have been .36, .47, .38, and
42 for vlacks, wvhites, Hispanies and others, respectively. Whites would have

had a much higher proportion of pass than blacks.
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Table b4

Proportion of Pass for Race and the
Third Conglomerate Variable Combination Group

Ethnic Conglomerate Variable Adjusted
Group 1 2 3 L 5 6 7 Average
Black .87 .66 .59 .38 i .43 .23 .52
White .82 67 .61 .55 .3k .28 A7 b9
Hispanic .79 .65 .60 .57 .ho .29 .24 .51

Other .89 Tk .65 .51 .39 .25 .18 .52

It is seen that the entire process of smeer-and-sweep requires the
selection of classification variables, and the following guidance functions:
(1) the order in which the classification variables to be presented in the

‘ analysis, and (2) the criterion for cell pooling. The pooling criteriop may
be.that each category contains (l) an approximgtely equal number of pass or
fail, (2) an equal.number of sample members, (3) equal variance of estimated
cell values (Gentleman, Gilbert, & Tukey, 1969, p. 289), or (14) equal range
.of cell values. Once the guidance functions are sufficiently determined, the
computational procedures become straightforward.

It should be noted that the cell values in the previous cross-classification
tables were estimated simply by using the observed data. Other estimating
procedures are possible. For exemple, one might use the formula

IW, , x,
ijn ijn
p,, = 2

i iwijn'.

where Wijn is the sample weight for the n'th individuesl in the ij'th cell, and

x, is the individual's score, either 1 or 0, 1 being pass, O being fail.

ijn

w/

g9




Some Considerations to Smear-and-Sweep Analysis

Although smear-and-sweep has been applied to the analysis of the National
Halothane Study (Gentleman, Gilbert, & Tukey, 1969), no proof of the stability
and accuracy of estimation has been given. Many questions involving the choice
of guiéahce functions such as the number of categories, and tk= order of the
classification variables introduced into the process, are unanswered. Among
such questions, the following ones are considered critical:

1. Does the number of categories selected affect the stability and

accuracy of the estimates?

2. Does the order of treating the interfering variables affect the

estimation of the effects of the independent variable?

3. How do the results obtained by smear-and-sweep differ from those

obtained by classical ANOVA?

To answer these questions, three sets of hypothetical data were constructed.
EFach set of data was derived by using the following four-factor main-effect
model:

U+ ai + Bj + Yk + BZ + €,

55l 1jkL

in which u = , Zai = ZBJ = Zyk = 226K = 0, and € “Y n(0,1).

JkL
This additive model was selected for its simplicity. If smear-and-sweep does
not work in such a simple model, it will very likely fail in a ﬁore complicgted
non-additive model.

In the four-factqr model, the first factor (independent variable), denoted
by A, is the variable of interest. A has two levels; thus, the estimates of
effects for Al and A2 are of main concern. The other three factors, designated

by B, C, and D, respectively, are referred to as interfering variables. All

these variables are assumed to be associated with the dependent variable.
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The error components for observations in each cell were chosen to be
normally distributed with a mean of O and a standard deviation of 1, snd were
generated using a standard method (Box & Muller, 1958). The main effects for
all factors in the analysis were fixed at the velues presented in Table 5.
These values represent differences ranging from four to one-tenth standard
deviations apart.

Table 5

Main Effects Selected for Each Set of Data

Data Set

Level - I 11 JIT
A 1 2.00 1.50 ) 1.00
2 -2.00 ~1.50 -1.00
B 1 ~1.50 -1.00 - .50
2 1.50 1.00 - .50
c 1 1.00 .50 .10
2 -1.00 - .50 - .10
D 1 .50 .10 : .05
2 - 050 - .10 - 005

The gell frequencies (i.e., number of observations in each of the cell
combinations) are not equal, reflecting situations likely to be confronted in
actual studies. These frequencies, as presented in Table 6, were arbitrarily
chosen, with only the restriction that there be sufficient degrees of freedom

for testing any main effect.

A, Number of Categories

In the sweeping process, a critical questidn is: How many categories
should one use? It has been»suggested that a relatively large number of cate-
gories would be preferred (Gentleman, Gilbert & Tukey, 1968, p. 296). However,
results in the National Helothane Study and the National Assessment of Educa-

tional Progress did not show a significant difference resulting from the number
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Table 6

Cell Frequencies

Cell
Frequency

P

Ledrgee

DO F‘F‘F‘F;F‘F'H = e
MDD HEEFPDODONDE W
MNHENMRODEHODNEHDDE - o
NHOMHRDEOMHEUUHEUNDHND D E

4
3
2
2
3
4
>
3
2
4
>
b
3
>

2

Total 56

of categories. This hay be due to the fact that the cell values in those
studies were so homogeneous that different grcuping processes would not be
sensitive enough to affect estimates for each category. Nevertheless, differ-
ential effects resulting-ff;m various numbers of categories were investigated
with the following procedures.

First, factors B and C were smegred and swept into a new variable with
four categories. This new variable was then smeared over factor D and resulted
in a two by four table. The estimated cell values were ordered and are presentéd

in Table T.
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Table T

Estimated Cell Value

Cell Order -

~ Data Set 1 2 3 L 5 6 7 8
I 2.37L 1.932 .505 .063 -.024 -.466 -1.894 -2.336
II 1.332 9Tk 463 .105 -.066 -.42h = 936 -1.29L4

v .482 413 .08L .024 .01L -.045 - .37k - [LLk

The ordered eight cells were swept into categories, starting from the cell
with the highesp value, in accordance with each of the following criteria:
1. Cells with -positive values would be swept into one category, whereas
those with negative values would be swept into another.
2. The range of cell values within each category would be less than .L45.
3. The range of cell values within each category would be less than .30.
L. The range of cell values #ithin each category would be less thanA.OS.

The numbers of resulting categories formed for each data set are presented

in Table 8.
Table 8
Number of Categories Formed Under Four Criteria
Criterion

Data Set cen ) 1 2 3 L

I | 2 4 7 8

II 2 L T 8

I1T 2 3% 3 7

*This classification was not used in the subsequent analyses

The independent variable A was then cross-classified with each final
conglomerate variable to form & two-way classification table. Analysis of

variance was then conducted for this two-way classification table, and the
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adjusted maréinal means for A1 and A2 were computed with an additive model.
The difference between the two levels, as contrasted with those expected true
differences (see Table 5) and those estimated by multifactor ANOVA, are presented
in Table 9. Some smear—and~syeep estimates (e.g., those obtained by two cate-
gories) are as close to the expected differences as those obtained by multifactor
HNOVA. The number of categories dbes affect estimates of the differences. For
data set I, the more categories used, the smaller the difference between A1 and
A2, and the greater the deviation of the estimated difference from the expected

~ value. This finding contradicts the suggestion that a larger number of cate-
gories be used (Gentleman, Gilbert & Tukey, 1969, p. 296). However, this
finding of the number of cutegories being negetively r=lated to the magnitudes
of the estimates is not necessarily supported by results from data set I1II, for
which the seven-category estimste is closer to the expected than the three-
category estimate. It is, therefore, not clear how systgmatically the choice
of the number of categories can affect the precision of estimation. The authors
suspect that the effects may fluctuate réﬁdomly. When the right number of"
categories is "hit," the estimates obtained by smear-and-sweep analysis can

- ~be as good as those by ANOVA or other methods.

B. Order of Varisbles

It has been argued that the order of ﬁhe presentation of the variables
might be analogous to the step-wise regression analysis in which the most
e important variable should be introduced first (Gentleman, Gilbert, & Tukey,
1969, p. 295). Previously, however, no systematic examination of this argument
has been conducted. It is, therefore, the purpose of this portion of ihe study

to explore the order effect of variables in the smear-and-sweep process.
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Table 9

Difference Between A1 and A2
As Obtained from Various Analyses

Data Set
Analysis I _ > ITT
Smear ani Sweep
- AxN(2)* 4.039 3.025 1.965
AxN(3) 1.433
AxN(L) 3.799 2.871
AXN(T) . 3.764 2.7hT 1.760
AxN(8) 3.762 2.762
Factorial ANOVA 3.938 2.938 1.938
Expected 4.000 3.000 2.000

*[he number in the parenthesis indi;;tes the number of categories
for the final conglomerate variable.

For the same design and data used in the previous section, three possible
orders 6f variable presentation were irvestigated. They are:

() B, C, D (the same as C, B, D),

(2) D, B, C (the same as B, D, C), and

(3) d, D, B (the same as D; C, B).

The alphabetic order of B, C, &nd D indicates the order of importance of these
va?iables in terms of the magnitude of their effects (see Table 5).

Estimated differences between Al and A2 from data set I under two cell-
pooling criteria are presented in Table 10. The results do not éupport the
argument that the most important variables should bte introduced first. Results
from the other two sets of data also failed to.provide.positive evidence. It

scems that what makes estimates different is not the order of variable presenta-

tion but the resulting number of final categories.
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Table 10

Estimated Difference Between A1 and A2
With Three Orders of Variable Presentation for Data Set I

Order of Cell-Pooling Criterion
- Presentation Range less Range less
o than .05 than .30
_ B, C + D  3.762(8)* 3.745(h)
B, D> C - 3.762(8) o 3.764(T)

C,D+ B 3.760(6) 3.799(4)

*The figures in parentheses indicate the number of categories of
the final conglomerate variable. '

c. Comparisons on Test Statistics

Analysis of variance may be applied tuv the final cross-classification
table to test the significance of treatment effects or group difference
(Gentleman, Gilbert, & Tukey, 1969). The question then is: To what extent
will the resulis obtained by smear-and-sweep differ from those obtained by
a factorial analysis of variance if the data permit the latter analysis?
To answer this question, nonorthogonal analysis of variance (ANOVA) for a
factorial design was pérformed on data used in previous sections to obtain
test statisties for A eliminating B, C, and D (A|B, C, D); namely, unconfounded
test of A (see Appelbaum & Cramer, 1973). Nonorthogonal ANOVA was eslso conducted
on the final two-way cross-classification table resulting from the smear-and-
sweep process, with A as one dimension agg the newly formed variable as another
dimensibﬁl"*%lt should be noted that ﬁhg§%;der of control variables incroduced
into the‘smear—and—SWeep process was B, C, then D.)

The mean squares and degrees of freedom for each test are presented in

Table 11. It can be seen that in the smear-and-sweep analyses, between-group

variance decreases, as expected, as the number of categories of the final
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‘conglomerate variable increases. The within-group variaq;es, however, fluctusate.
Converting the variances into F statistics, all of £hem are significant at the
.0l level with their associated degrees of freedom. As far asﬁsignificance
testing is concerned, smear—and-sweep.provides results similar to faétorial
analysis of variance. However, smear-and-sweep analysis may provide a more
conservative test. Comparing A|B; C, D, and A|N(8), for example, botﬁ designs
produce the same magnitude of error variance, same degrees of freedom for A
effects, but their between-group variances are quite different; A|N(8) has much
smaller between-group variance than AIB, C, D. 1t ie possible when A effects
are swall, that the A|N(8) masy provide test statistics indicating non-significant

A effects while A|B, C, D indicates significant differences.

Summary and Discussion

Smear-and-sweep analysis is a method to compute summary statistics such
that the effects of interfering vﬁriables are redﬁéed or controlled. Tﬁe ?gsic
strategy is to pool cells of similar values into categories. It involves the
following steps: (1) forming a two-way classification table (i.e., smearing)
and estimating cell values; (2) forming categories based on cell values (i.e.,
sweeping); and (3) comparing the values among levels on the interested independent
vaéiable across the final set of categories.

Since its development and application in the Mational Halothane Study, it
has receiveq little systematic evaluation. This stﬁdy shows that the precision
of the summary statistics depends very much on the choice of the numher of cate-~
gories; however, it seems that it is not always preferable to have a large number
of categories; The investigation does not support the argument tthhthe greater
the numbér of catego;;és; the better the estimates., Furthermore, thé choice
of the categories has noé yet been systematically defined. Cluster analysis

could be an alternative to sequential two-way aggregation. Further investigation

is warranted.
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The suggestion of introducing the most important interfering variable
first in the process is also not supported. The order itself does not seem
to be a determinative factor.in fhe precision of estimates. It is the number
of resulting categories that affects estimates. Once the number of categories
of the final conglomerate variable is selected, the order of variable presenta-
tion does ndt‘seem to be critical. However, it should be noted that the order
of presentation may very iikely determine the selection of the number of cate-
gories.
provide a conservative significance test as compared to factorial analysis of
variance. When data are sparse, smear-and-sweep is an alternative method that
may lend some strength to stable estimates, and explore the treatment effect or

possible relationships between classification and dependent varisables.
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'Chapter VI; A Compaiison of Baléncigg;anqﬁﬁnangjs of Covariance

in the Adjustment of Educational Data.

Female and male admission ~ ‘ graduate progrems at fhe
University of North Carolins sd are compared for 1972-73 an’
1973-Tk. To assess possible se. wuiuved bias in admission, rates are
adjusted for applicant‘Qualifications by analysis of covariance and by
balancing.

The adjusted admission rates reflect,ffn one case, i.e., for one
program and one admission year, a slight advanfgge for mdle\applicanﬁsmu
over females, while in three cases, female applicants were granted a
slight advantage over males in admission. In the remaining four cases,
ﬁhere is no evidence that sex of applicant,'pgg_ggﬁ playea a role in

admission decisions. Wherever a sex-related advantage is detected, the

favored sex is that with the fewer applicants to the program.
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The dependent variable in this study, defined for each
applicant for a given program and enrollment year is

1, if admitted
YiJ =
. 0, if rejected ,

where j=1 if the applicant is female and =2 if the applicant
is male, and i=1, 2, ..., n, is 1"~ pumber of female (or male)

epplicants to the program for that year. Then

n, .
PJ = iEl(YiJ/nJ)

is the mean YiJ for sex J, and also represents the proportion

of applicants of sex J who were admitted. The P, values are

J

the female and male admission rates presented in Table T,

Given in Table I are the unadjusted rates of admission by
sex, and in Table II the within-group correlations of interfering
variables with admission
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TABLE 1T

Graduate Admission Rates by Sex for 1972 and 1973%*

Female  Number of Male Number of
Admission Female Admission Male

Field Year Rate Applicants Rate Applicants
English - 1972 32.1 165 34.0 235
1973 20.3 153 - 25.0 20k
History 1972  68.2 L 55.5 182
1973 s4.s 55 L8.0 177
‘Library T " 175 ' 70.2 ST
Science 973 1.0 157 - 50.0 Lo
Sociology 1972 31.6 38 18.2 66
1973 22.6 31 11.6 69

*Excluded from the table are all applicants for whom less than
complete data were available from the set of undergraduate
grade point average, GRE scores, and two letters of recommen-
dation.

TABLE 11

Point-Biserial Correlations of Qualification Variables
with Admission for Female (F) and Male (M) Applicants

GPA GRE V GRE Q  GRE Adv REC
Field Year F M F M F M F M F M

English .25 k2 .16 .46 .18 .34 .20 .33 .26 .22

T2
T3 .37 .27 .28 .29 .15 .27 .25 .35 17 .19

History 72 .52 .52 .56 .h3 .24 .43 .39 .33 .h2 .kg
73 .38 .36 .62 .54 .43 47 .1k b1 42 .35

Library 72 .35 .L2  .50-.06 .30-.07 _— - .39 .29
Science T3 .43 .38 .38 .55 .48 .65 -- — .33 .47

Sociology 72 .27 .46 .51 .14 .67 .15 .60 .16 .07 .32
73 .48 .12 .16 .34 .06 .35 .37 .26 .39 .15
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Also of interest are the mean differences between the sexes
on the interfering variables, given in Table III. These are
computed by subtracting the mean for female applicants from the
mean for male applicants, so that a positive mean difference
represents a male advantage and a negative mean difference
represents a female advantage. The unit, in each case, is that
in which each variate is naturally recorded.

Somewhat more  informative are the standardized mean differ-
ences, presented in Table IV. Here, each male-female mean dif-
Tference is divided by the standard error of the mean difference.
Each value in Table IV represents a t statistic. Those values
which 2ifr. rom zero by approximatel, iwo or more are Judged

zero sufficiently to rej vesent a statistically
$... ..icant difference between sexes. The results of Table IV
represent the values of

The index m identifies the covariate, as defined in Table V;
S is the within-sex standard deviation £ that covariate;

n. indicates the number of applicants of . j.

Inspection of Tables III and IV is i ructive. Without
exz=ption, the mean grade point average f-.. women applicants
iz Tigher than that for males for each prwsz am and each year.
(< 3RE scores, women applicants show highe: nzemn scores than
rzle applicants on the verbal test (except Jr applicants to
tae Department of English), while males shc - higher means than
females on the quantitative test, and also (with the exception
of Sociology applicants in 1973) display higher mean scores on
the advanced test. For each progrem and each year, the mean
summary score derived from letters of recommendation is higher
for males than for females. The mean differences on GRE-Q for
male and female applicants to English is extraordinarily large,
more than TO poxnts iz both years (Table ITI), with highly
sigmificant t statistics, 7.1 and 6.6 (Taxle IV).

A_comment is in order concerning the consistent advantage
=i zale applicants on.mean level of recommendation for graduate
st—y (Tables III and IV), eéspecially since it contrasts witg a

femmle advantage on grade point average and (usually) on GRE-V
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TABLE V

Variables Pertaining to A&mission Qualifications

Variable The Nature of the Variable
Xl Undergraduate grade point average for final two
years (GPA)
Xé Verbal score on the Graduate Record Examlnatlon
(GRE-V) :

Quantitative score on the Graduate Record
Examination (GRE-Q)

Score on the Advanced Test, Graduate Record
Examination (GRE-A)

Mean recamendation (with each coded 0-L)
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It is possible that this represents a bias toward males on the
part of those who recormend applicants, who most frequently
are male faculty members. However, the recommendation is
couched in terms of the probability that the candidate will
successfully complete a doctoral program; the apparent male
advantage could be the result of possibly valid judgments that
women have been more likely than men to discontinue graduate
work before receiving the Ph.D.

TABLE VI

Comparison of Unadjusted and Adjusted Female (F)
and Male-Female (M-F) Admission Rates

Unadjusted

Adjusted

Field Year " ANCOVA Balancing

F M-F F  MF F M-F

English 1972 32.1 1.9 33.5 - W 31.9. 2.3
1973 - 20.3 L.7 23.0 - .1 22.6" T

History 1972  63.2 -12.7  67.9 -12.3  68.3 -12.8
1973 5)4-5 - 6-5 )"'8-9 '9 h6l3 )"'-3

Library 1972 59.4 10,6 59.6 10.1 59.0 12.h4
Science 1973 51.0 - 2.0 50.6 .8 50.0 3.8
Sociology 1972 1.6 -13.4 29.2 -~ 9.7 30.4 -11.5
1973 22.6 -11.0 21.9 -10.0 22.3 -~10.6

A reasonable indication of apparent favoritism toward
males in admission to graduate study is provided by the male-

female difference in admission-rate.

For each program and

each year, this difference is compared in Table %T with the
‘male-female difference after adjustment by analysis of covari-
ance and adjustment by balancing for the sex differences on
all five interfering variables.

the unadjusted differences in Figure 1.

The adjusted differences in
admission rate using analysis of covariance are plotted against

From Table VI or Figure 1, several conclusicns follow.

First, neither the covarizmre adjustment ncr the balancing

e.Justmert radically changes the impressions gained from as-
==ssing unadjusted differences in admission rates for men and

WOME.

116

In the most extreme cases, History in 1972 and Sociology



~116-

in both years appeared to favor female applicants, and the
appearance applies to adnission rates following adjustment;
Library S¢ience in 1972 appeared to favor male applicants
and, again, the adjustment leads to no different appearance.

A somevwhat different conclusion does arise, however, re-
garding the influence of sex of applicant upon admission policy
in History for 1973 and in English for 1973. The adjusted re-
sults for History, 1973, suggest that the apparent favoritism
of female applicants may have beer n corv:, . . -ale-female
differences in scores on the covariates. While the unadjusted
rates favored women by 6.5 percent, adjusted rates actually
favor men by .9 percent from ANCOVA, and by 4.3 percent from
balancing. For English, 1973, unadjusted rates suggested a
tendency to favor males slightly over females in admission.
Efter adjustment, there are only negligible differences between
mal= and female rat==.

10 °
Library Science, '72

Py e kary Science, '73
Miscezy, ° ® English, '7)
* " Eoglish, '72

Adjusted Difference

Unadjusted Difference

FIG. 1

Male-F=male Differences in Admission Rates: Adjusted Differ-
ences (by Analysis of Covariance) vs. Unadjusted Differences
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The fourth and sixth columns of Table VI suggest that,
for one program in ore year, Library Science in 1972, male
" applicants were accepted more frequently than female applicants
for reasons other than differences in grade point average,
test scores, or strength of recommendations. Fc- Yostory in
1972 and for Sociology in both years, female apr .. nts apr ar
to have been granted a similar < vantage. In the L lweaining
four cases, there is no eviden:e that sex of applicant, bex se,
played a role in admission decisions.

DISCUSSION

Adjustment techniques 23 used in this study provide an
answer to the question of what female ant-male admission rates
to graduate study might ‘have been if the <twd sexes had pre-
sented equal qualifications on a set of interfering character-
istics, as these characteristics were used by the admission
committee to select applicants. Interpretation of adjusted
scores must be tempered by the realizaticm that these adjust-
ments occur under the admission committee’s definition of
qualification,

Adjusted rates provide some clue as to what male and fe-
male acceptance rates might have been if males and females had
had the same distributions for the interfering variables. It
is most meaningful to examirne adjusted rates in conjunction
with unadjusted rates, which represent how often females and
males in reality wvere accepted. Adjusted acceptance rates pro-
vide more information concerning the fairrness of the adnissions
comnittee, but when examined in conjunction with unadjusted
rates they also provide information concerning the differential
qualifications of males and femaliss. A large difference be-
tween unadjusted rates and rates adjusted for a particular
characteristic suggests that the average score is quite differ-~
ent for male and female applicants, and also that the committee
considers this difference to be important. Such a pattern of
scores may provoke interest as to why the applicants of one
s8eX are more qualified than those of the other on the average
end also as to why the committee considers this characteristic
to be important in defining qualification. For example, fe~
males applying to these four departments seem to have higher
GPA and GRE-V averages but lower GRE-Q, GRE~ADV, and REC. .
averages than male applicants in the corresponding departments.
It would be interesting to investigate how uniform this pattern
is among applicants to other departments at this university -
and among applicants to other graduate schools. Xven if ad-
Justed male and female rates are approximately th=» same, fur-
ther investigation may be desirable if unadjustec rates are
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very differen* f nther, since this ~nests the che
applicants of . - .. ~e much more qualif .an those of
the other. Fox e, ., ¢, re2idity study mignt be conducted

to insure that interferin, cheracteristics are being used
fairly, or a study might be done to determine why highly qual-
ified persons of one sex but not of the other are motivated to
8pply to the department.

In this investigation of admission of applicants to four
graduate programs, only modest differences were observed be~ -
tween admission rates for females and males, sometimes fawvoring
one sex and sometimes favoring the other. After adjusting for
sex differences in undergraduate grade point average, Graduate
Record Examinations srores, and recommendations, some of these
differences remained (three favoring females, one favoring
peles), while others disappeared. The study illustrates the
eppropriateness of adjusting admission rates before drawing
conclusions concerning sex differences in admission to graduate

study.
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Conclusions

A recurring problem in educational research {and indeed in social, beha-
vioral, énd medical research) has been the adjustment 6f data to account for
initial differences among observed groups of individuals on attributes uncon-
trolleble by the researcher. Unlike the experimental solution introduced by
Fisher--randomization--which typically cannot be employed in the educational
setting, the majority of "solutioné" empioyed by educational evaluators have
been :=ssentially statistical or data analytic adjustments. While thé'ﬁse 6f
.'this.class of techniques is by no means new, little in the way of systematic
investigation of their nature or relation to other statistical techniques
emerging from the Fisherian tradition has been undertaken.

In such nationally important research undertakings és the NAEP studies
of educational progress, it was appropriate to employ such techniques, still
without a detéiled understanding of their nature. Chiet among these techniques
was that known as balancing, defined for situations in which the basic data are
proportions of éuccesses in the cells of a multiply élassified table, usually
with unequal numberé of basic observations in the several cells, It was, at
the -outset, known that simple comparisons of raw proportions would lead to
confounded results and hence i£ was appropriéte to employ a technique which
could potentially untangle the various influences which exhibited themselves
in the data.

Balancing is not, however, the only technique that has been proposed to
accomplish this end. Techniques such as direct and indirect standardization,
"smear-and-sweep," and the analysis of covariance have all been employed at

various times for similar purposes,
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It was the aim of the research herein reported to develop a better under-
standing of the nature and similarities of these techniques, thereby to make

possible a greater appreciation of their implications for applied research.

As it has turned out, there is, for many of these techniques, a single unifying

_approach, that of the nonorthogonal analysis of variance. By viewing them in

terms of this type of analysis, unexpected insights into their nature were
found. In order to accémplish this, however, more needed to be understood
about the nonorthogonal analysis of variance and hance a substantial portion
of the activities of this investigation was spent on a detailed study of this
technique.

It was found that the nature of the nonorthogonal analysis of variance
can be understood by viewing it as a comparison of competing models with the
role of significance testing being simfly the means for selecting the bést of
the competing models. It was found that botﬁ ignoring and eliminating teéts
Wefe jointly necessary to accomplish these ends and that it is not always

possible to select a single best model (i.e., there is the possibility, albeit

'rare, for an ambiguous result). Of importance for the later insights into

adjustment techniqﬁes were the results on estimation which follow the selection
of the "best'" model, particularly those results which bear upon marginal means
and the concept of weighting.

With the resulté from the study of the nonorthogonai analysis of variance
firmly established, we looked more closely at the several adjuétment technidues.
As had been speculated, it was possible to show that if one defines success or
failure as a binary random variable, the equations of the balancing method are
identical to those that define the nonorthogonal analysis of variance in a main
effects modgi. The result. of this equivalence is that one can, with some care,

use sﬁandard'ANOVA programs to perform balancing; consequently, the large body
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of literapure concerning analysis of variance can be directly applied to the
. balancing situation. Of greater importance for interpretation, however, is
the virtual identity between the balanced estimates and the estimated marginal
means in nonorthogonal ANOVA. - This identity led us to explore the various
types of weighting schemes for marginal means an2 to conclude that, in a more
general, and possibly interactive context, one needs first to adopt a linear
model which accurately reflects the population from which the data were obtained.
Following the selection of the appropriate model (a significance testing problem)
and the proper estimation of parameters in that model (an estimation problem
independent of the significance testing problem), the weights are then chosen
. as a function of the use to which.the merginal means are to be put. Balancing,
“'iich inherently implies a main effects model, has been used to compare groups
as if the groups were comparable on other variables. This necessarily implies
estimation in a main effects model followed by weighting with singly subscripted
weights. If, however, one were to decide that an interactive model was more
appropriate (by use of the nonorthogonal ANOVA, for instance), one could esti-
mate cell means in that model and then again use singly subscripted weights to
draw the same type of conclusions but under a rather different model of nature.
Direct standardization can be viewed in a similar way. Since direct stand-
ardization is based on observed cell means (estimates from an interactive model)
the results of direct standardization must differ from those of balancing (a
main effects model) when interactions are present. Standardized estimates
can also be obtained by estimation in an interactive model combined with the
use of-singly‘éubscripted weights based upon the proportion of cases in the
"standard" populations. Indirect standardization, however, does not fit this
type of model, and may give different results from belancing, even when no

interaction is present.
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Adjustment by analysis of covariance is similar to both balancing and
direct standardization although on its face it appears to provide a different
type of adjustment. If one considers a multifactor main effects ANOVA design,
where for a particular factor one includes only the linear component in the
model, the estimated cell means are identical to what would be obtained, had
a covariate been used in place of the factor. In this special and somewhat
limited case the balanced estimates will be identical to estimates adjusted
for a covariate. One could as well generalize this result to interactive
.models, so that we have a class of adjustment procedures which areressentially
equivalent, differing primarily in the choice of the appropriate linear model.

The choice between balancing, direct standardization, and analysis of
covariance is necessarily dependent only upon which provides the most appro-
priate linear mcdel. In fact, none of them may provide a parsimonious model,
and we think it preferable to think of'choosing the correct model in the more
general context of nonorthogonal ANOVA'With these special cases providing
frequently chosen options. 1Indirect standardization would seem to be a less
preferable choice. .

The smear-and-sweep procedure differs markedly from the above procedures in
that it is comparitively ill—definéd and arbitrary; there is no well-justified
- rule for deciding the order in which classifiéation variab;es are to be selected
and how cells sﬁould be pooled. Our investigation suggésts that the number of
categories may substantially affect the estimated effects while-the order of
variables has a considerably smaller effect. In view of the arbitrariness
involved, we can see little justification for the use of the smear-and-sweep

procedure to meet the purposes that also may be served by balancing or analysis
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In'summafy, & number of the adjustment techniques employed for the purpose
of adjusting for initial differences among observed groups are closely related
through the more general nonorthogonal analysis of variance. In generai these
techniques are actually a combination of three rather distinct processes: the
determination of an appropriate linear model, the estimation of parameters, and
the combining of estimates bf a weighting scheme. Each technique (save smear-
and-sweep) employs a perticular combination of these, usually- prescribed before
the fact. A detailed understanding of how each operates relative to these

processes then allows for a better understanding of its basic nature.

124



-124-
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